上海羊羽卓进出口贸易有限公司

生物传感器原理 一文读懂生物医学领域的传感器(非常详细)

发布时间:2024-10-07 04:10:05

一文读懂生物医学领域的传感器(非常详细)

生物医学传感器是传感器的一大应用领域,做医学传感器的厂商也不在少数。很多时候,生物医学传感器是技术门槛较高的传感器,是生物医学科学和技术的尖兵。现代生物医学的研究,依赖于生物医学传感器的正确测量。通过本文,你将全面了解生物医学传感器的分类和基本原理。

现代传感器的物理模型如图所示:

对于传统被测量而言,敏感膜就相当于传感器与被测对象的界面。在传统的传感器前面附加一层根据不同需要而特制的敏感膜,即可表示化学传感器和生物传感器。二者的区别就看是否具有生物活性。具有生物活性的膜材料就是生物传感器。传感器中可存在两个界面,一是被测介质和敏感膜间的界面,二是敏感膜和传感器间的界面。界面上发生着复杂的物理、化学或生物过程。

传感器专家网https://www.sensorexpert.com.cn

专注于传感器技术领域,致力于对全球前沿市场动态、技术趋势与产品选型进行专业垂直的服务,是国内领先的传感器产品查询与媒体信息服务平台。基于传感器产品与技术,对广大电子制造从业者与传感器制造者提供精准的匹配与对接。

医学对传感器的要求

1、安全性高(特别是用于人体的传感器和换能器),灵敏度高,信噪比高(选择性高)。

2、保证物理安全性的措施是电的隔离、浮置技术。

3、保证化学安全性高的要求是无毒性,无近期和远期的致癌效应。

4、保证生物安全性高的要求是无DNA和RNA突变。

5、保证选择性高的措施是利用共振效应、滤波技术、自适应技术、分子识别与离子识别技术。

6、保证灵敏度高的措施是:物理、化学和生物放大技术。

医学传感器的主要用途

1、检测生物体信息:如心脏手术前检测心内压力;心血管疾病的基础研究中需要检测血液的粘度以及血脂含量。

2、临床监护

如病人在进行手术前后需要连续检测体温、脉搏、血压、呼吸、心电等生理参数。

3、控制

利用检测到的生理参数,控制人体的生理过程。如电子假肢

医学中需要测量的量

生物医学传感器的分类

按应用形式分类有:植入式传感器、暂时植入体腔(或切口)式传感器、体外传感器、用于外部设备的传感器

植入式传感器

按工作原理分有:物理传感器(位移、力、温度、湿度。。。)、化学传感器(各种化学物质)、生物传感器(各种酶、免疫、微生物、DNA。。。)、生物电电极传感器(心电、脑电、肌电、神经元放电。。。)

物理传感器

利用物理性质或物理效应制成的传感器叫物理传感器,或把物理量转变为能为计算机识别的电学量的器件叫传感器。

生物医学用物理传感器的分类和用途

力传感器用来测量重量;压电薄膜传感器用于测量心率和呼吸模式;热电堆传感器用于测量体温;血氧传感器用于测量血氧含量;CO2,传感器用于测量新陈代谢;流量传感器用于辅助呼吸;力传感器用于测量氧气瓶中剩余的氧气含量。

化学传感器

化学传感器是把化学成分、浓度等转换成与之有确切关系的电学量的器件。它多是利用某些功能性膜对特定化学成分的选择作用把被测成分筛选出来,进而用电化学装置把它变为电学量。

一般多是依赖膜电极的响应机理、膜的组成或膜的结构进行分类。如离子选择电极换能器、气敏电极换能器、湿敏电极换能器、涂丝电极换能器聚合物基质电极换能器、离子敏感场效应管换能器、离子选择微电极换能器、离子选择薄片换能器。

生物医学用各种化学换能器测量的化学物质有:K+、Na+、Ca2+、Cl-、O2、CO2、NH3、H+、Li+ 等。

生物传感器

生物传感器利用生物活性物质选择性的识别和测定实现测量,主要由两大部分组成:一为功能识别物质(分子识别元件),由其对被测物质进行特定识别;其二是电、光信号转换装置(换能器),由其把被测物所产生的化学反应转换成便于传输的电信号或光信号。

最先问世的生物传感器是酶电极,Clark和Lyons最先提出组成酶电极的设想。70年代中期,人们注意到酶电极的寿命一般都比较短,提纯的酶价格也较贵,而各种酶多数都来自微生物或动植物组织,因此自然地就启发人们研究酶电极的衍生型:微生物电极、细胞器电极、动植物组织电极以及免疫电极等新型生物传感器,使生物传感器的类别大大增多;

进入本世纪80年代之后,随着离子敏场效应晶体管的不断完善,于1980年Caras和Janafa率先研制成功可测定青霉素的酶FET。

生物传感器的组成与基本原理

1、分子识别元件

2、换能器

换能器种类有电化学电极、半导体、热敏电阻、表面等离子体、压电晶体等

生物传感器的分类

按分子识别元件分

按器件分类

酶传感器

酶的催化作用是在一定条件下使底物分解,故酶的催化作用实质上是加速底物分解速度。

酶传感器由固定酶和基础电极组成,酶电极的设计主要考虑酶催化过程产生或消耗的电极活性物质,如一个酶催化反应是耗O2过程,就可以使用O2电极或H2O2电极;若酶催化反应过程产生酸,即可使用PH电极。

酶传感器信号变换方法

1、电位法

电位法是通过不同离子生成在不同感受体,从测得膜电位去计算与酶反应有关的各种离子的浓度。一般采用铵离子电极(氨气电极)、氢离子电极、氧化碳电极等;

2、电流法

电流法是从与酶反应有关的物质的电极反应得到的电流值来计算被测物质的方法。电化学装置采用的是氧电极。燃料电池型电极和过氧化氢电极等;

葡萄糖传感器

工作原理

测量氧消耗量的葡萄糖传感器+测H2O2生成量的葡萄糖传感器

氧化酶(GOD):葡萄糖+H2O+O2――――――→葡萄糖酸+H2O2

故葡萄糖浓度测试方法有三种:1、测耗量O2; 2、测H2O2生成量;3、测由葡萄糖酸而产生的PH变化。

测量氧消耗量的葡萄糖传感器

氧电极构成:①由Pb阳极和Pt阴极浸入碱溶液,②阴极表面用氧穿透葡萄糖(基质)膜覆盖[特氟隆,厚约10μm]。

氧电极测O2原理:利用氧在阴极上首先被还原的特性。溶液中的O2穿过特氟隆膜到达Pt阴极上,当外加一个直流电压为氧的极化电压(如0.7V)时,则氧分子在Pt阴极上得电子,被还原:其电流值与含O2浓度成比例。

O2+2H2O+4e=======4OH-

测H2O2生成量的葡萄糖传感器

葡萄糖氧化酶(GOD)

葡萄糖+H2O+O2―――――――→葡萄糖酸+H2O2

葡萄糖氧化产生H2O2,而H2O2通过选择性透气膜,在Pt电极上氧化,产生阳极电流。葡萄糖含量与电流成正比,由此可测出葡萄糖溶液浓度。

在Pt电极上加0.6V电压时,则产生的阳极电流为:H2O2―――――――→ O2+2H++2e

微生物传感器

微生物传感器分为好气性微生物传感器和厌气性微生物传感器

将传感器放入含有有机化合物的被测溶液中,有机物向微生物膜扩散而被微生物摄取(称为资化)。

好气性微生物传感器

微生物的呼吸可用氧电极或二氧化碳电极来测定结构

O2电极好气性微生物传感器响应曲线

厌气性微生物传感器

可测定微生物代谢产物,可用离子选择电极来测定

甲酸传感器(厌气性)原理:

将产生氢的酪酸梭状芽菌固定在低温胶冻膜上,并把它固定在燃料电池Pt电极上;

当传感器浸入含有甲酸的溶液时,甲酸通过聚四氟乙烯膜向酪酸梭状芽菌扩散,被资化后产生H2,而H2又穿过Pt电极表面上的聚四氟乙烯膜与Pt电极产生氧化还原反应而产生电流,此电流与微生物所产生的H2含量成正比,而H2量又与待测甲酸浓度有关,因此传感器能测定发酵溶液中的甲酸浓度。

免疫传感器

免疫传感器基本原理是免疫反应。利用固定化抗体(或抗原)膜与相应的抗原(或抗体)的特异反应,使得生物敏感膜的电位发生变化。

抗原或抗体一经固定于膜上,就形成具有识别免疫反应强烈的分子功能性膜。如,抗原在乙酰纤维素膜上进行固定化,由于蛋白质为双极性电解质,(正负电极极性随PH值而变)所以抗原固定化膜具有表面电荷。其膜电位随膜电荷要变化。故根据抗体膜电位的变化,可测知抗体的附量。

现代医用传感器技术已经摆脱了传统医用传感器体积大、性能差等技术缺点,形成了智能化、微型化、多参数、可遥控和无创检测等全新的发展方向,并取得了一系列的技术突破。其他一些新型的传感器如DNA传感器,光纤传感器等也方兴未艾。医用传感器技术的革新必将推动现代临床医学的更快发展。

随着信息时代的到来,传感器技术已经成为信息社会的重要技术基础,而医学传感器也势必要紧紧抓住这一机遇,努力朝着智能化、微型化、多参数、可遥控和无创检测等方面发展,为促进现代医学发展提供重要推动力。相信在医用传感器不断提高其科技含量的同时,医用传感器在医学领域中的应用也将越来越广泛。

您对本文有什么看法?欢迎在传感器专家网 本内容底下留言讨论,或在中国最大的传感社区:传感交流圈中进行交流。

传感器喜闻乐见了,可生物传感器是什么?

研究人员开发了新的信号处理技术,与光流体生物传感器芯片一起使用,以检测浓度变化8个数量级的纳米珠混合物。图片来源:霍尔格·施密特/加州大学圣克鲁斯分校

今年七月,据科技日报报道,美国加州大学圣克鲁斯分校团队在用于检测或分析物质的芯片传感设备方面取得重大进展,为研制高灵敏度的便携式集成光流体传感设备奠定了基础。这些设备即使涉及浓度变化很大且完全不同类型的生物粒子时,仍然可同时进行多类型的医学测试。该研究成果发表在近期的《光学》杂志上。

研究人员将新的信号处理技术应用于基于光流体芯片的生物传感器,能对8个数量级浓度的纳米珠混合物进行无缝荧光检测,将传感器可工作浓度范围扩大了1万倍以上。

上述研究大幅提升了生物传感器的性能,拓展了生物传感器的应用领域。可是,生物传感器是什么?它的原理又是怎样的?与普通传感器有哪些区别?本文将围绕这些问题对生物传感器进行介绍。

识别+转换

生物传感器(biosensor),是一种对生物物质敏感并将其浓度转换为电信号进行检测的仪器。是由固定化的生物敏感材料作识别元件(包括酶、抗体、抗原、微生物、细胞、组织、核酸等生物活性物质)、适当的理化换能器(如氧电极、光敏管、场效应管、压电晶体等等)及信号放大装置构成的分析工具或系统。

其中识别元件的作用是识别被测目标,是引起某种物理变化或化学变化的主要功能元件,是生物传感器选择性测定的基础;换能器的作用是把生物活性表达的信号转换为电信号。

具体来讲,生物传感器主要功能包括感受、观察和反应。

感受:提取出动植物发挥感知作用的生物材料,包括:生物组织、微生物、细胞器、酶、抗体、抗原、核酸、DNA等。实现生物材料或类生物材料的批量生产,反复利用,降低检测的难度和成本。

观察:将生物材料感受到的持续、有规律的信息转换为人们可以理解的信息。

反应:将信息通过光学、压电、电化学、温度、电磁等方式展示给人们,为人们的决策提供依据。

生物传感器的分类

根据生物传感器中的分子识别元件和换能器(信号转换器)的不同,可以从这两个方面对生物传感器分类:

按分子识别元件可分为: 酶传感器、微生物传感器、细胞器传感器、组织传感器、免疫传感器。

酶传感器

是由酶催化剂和电化学器件构成的。由于酶是蛋白质组成的生物催化剂,能催化许多生物化学反应,生物细胞的复杂代谢就是由于成千上万的酶控制的。酶的催化效率极高,而且具有高度专一性,即能对待测生物量(底物)进行选择性催化,并且有化学放大作用。因此利用酶的特性可以制造出高灵敏度、选择性好的传感器。

微生物传感器

用微生物作为分子识别元件。与酶相比,微生物更经济、耐久性也好。

免疫传感器

免疫传感器的基本原理是免疫反应。利用抗体能识别抗原结合的功能的生物传感器称为免疫传感器。

生物组织传感器

是以活的动植物组织细胞切片作为识别元件,并与相应的变换元件构成的传感器。具备寿命长、制作简便等特点。

细胞器传感器

是利用动植物细胞器作为敏感元件的传感器。细胞器是指存在于细胞内的被膜包围起来的微小“器官”,如线粒体、微粒体、溶酶体、过氧化氢体、叶绿体、氢化酶颗粒、磁粒体等等。

按转换器件可分为 压电晶体生物传感器、半导体生物传感器等。

半导体生物传感器

是由生物分子识别器件(生物敏感膜)与半导体器件结合构成的传感器。目前常用的半导体传感器是半导体光电二极管、场效应管(FET)等。半导体生物传感器具备

半导体生物传感器的特点有:1、构造简单,便于批量生产,成本低;2、机械性能好,抗震性能好,寿命长;3、输出阻抗低,便于与后续电路匹配。

压电晶体生物传感器

利用压电石英晶体对表面电极区附着质量的敏感性,并结合生物功能分子(如抗原和抗体)之间的选择特异性,使压电晶体表面产生微小的压力变化,引起其振动频率改变可制成压电生物传感器 。它主要由压电晶体、振荡电路、差频电路、频率计数器及计算机等部分组成。

生物传感器的应用

生物传感器是一门由生物、化学、物理、医学、电子技术等多种学科互相渗透成长起来的高新技术。因其具有选择性好、灵敏度高、分析速度快、成本低、在复杂的体系中进行在线连续监测,特别是它的高度自动化、微型化与集成化的特点,使其在近几十年获得蓬勃而迅速的发展。

生物传感器在各个行业如食品、制药、化工、临床检验、生物医学、环境监测等方面有广泛的应用前景。特别是随着分子生物学与微电子学、光电子学、微细加工技术及纳米技术等新学科、新技术结合,生物传感器正改变着传统医学、环境科学以及动植物学的面貌。生物传感器的研究开发,已成为世界科技发展的新热点,形成21世纪新兴的高技术产业的重要组成部分,具有重要的战略意义。

生物传感器在食品分析中的应用包括食品成分、食品添加剂、有害毒物及食品鲜度等的测定分析等;生物传感器在环境监测中的应用包括水环境监测、大气环境监测等;生物传感器在医学领域的应用包括DNA突变检测、生物芯片研发、疾病诊断、病毒检测和脑损伤检测等

图片来源于网络

资料来源:

https://news.sciencenet.cn/htmlnews/2023/6/503663.shtm

https://baike.kuyibu.com/view/341.html

https://baijiahao.baidu.com/s?id=1753408256991414968&wfr=spider&for=pc

https://www.wiki8.cn/shengwuchuanganqi_108502/

http://www.eepw.com.cn/zhuanlan/289032.html

https://zhuanlan.zhihu.com/p/478612462

https://baike.baidu.com/item/%E7%94%9F%E7%89%A9%E4%BC%A0%E6%84%9F%E5%99%A8/5868469?fr=ge_ala

相关问答

生物 传感分析仪 原理 ?

生物传感器的基本工作原理是:将具有分子识别功能的生物物质通过特殊加工技术涂敷固定在固态载体上(例如高分子膜等),形成功能膜,当其与被测物质相接触时,膜...

请问什么是 传感器 原理 ? 传感器 原理 的定义 又是什么呢?_...

想必大家对传感器的原理这个词感到陌生吧,都不知道它大概的含义是什么呢?现在我们来了解下。什么是传感器的原理以下几个要注意的:我们在上大学的...

压磁式 传感器 的工作 原理 ?

它的工作原理是建立在磁弹性效应基础之上,即利用这种传感器将作用力(如弹性应力、残余应力等)的变化转化成传感器导磁体的导磁率变化并输出电信号。压磁式传...

生物 医学 传感器 有哪些?

生物传感器的种类:(1)按照其感受器中所采用的生命物质分类,可分为:微生物传感器、免疫传感器、组织传感器、细胞传感器、酶传感器、DNA传感器等。(2)按...

aps4-12s 传感器原理 ?

传感器的工作原理是通过敏感元件及转换元件把特定的被测信号,按一定规律转换成某种“可用信号”并输出,以满足信息的传输、处理、记录、显示和控制等要求。传...

传感器 的工作 原理 是什么_车坛

传感器的工作原理是通过敏感元件及转换元件把特定的被测信号,按一定规律转换成某种“可用信号”并输出,以满足信息的传输、处理、记录、显示和控制...

生物量 是什么 传感器 可检测物理量、化学量、 生物量 ,那什么...

[最佳回答]生物量(biomass)是生态学术语或对植物专称植物量(phytomass),是指某一时刻单位面积内实存生活的有机物质(干重)(包括生物体内所存食物的重量)总量,...

传感器 是做什么用的? 传感器 有哪些类型呢?_齐家问问

[最佳回答]非常高兴为你解答,我这边刚好有一份关于传感器的资料,供你参考一下。因为人们为了从外界获取信息,必须借助于感觉器官。而单靠人们自身的感觉器官,...

生物 识别是什么?

据我所知,生物识别技术是指通过计算机与光学、声学、生物传感器和生物统计学原理等高科技手段密切结合,利用人体固有的生理特性,(如指纹、脸象、虹膜等)和行...

生物 感应器有哪些?

生物传感器主要有下面三种分类命名方式。(1)根据生物传感器中分子识别元件即敏感元件可分为五类:酶传感器(enzymesensor)、微生物传感器(microbialse...生...

展开全部内容