上海羊羽卓进出口贸易有限公司

磁性传感器位置 海军工程大学研究者提出消磁站水下磁传感器的高精度定位方法

发布时间:2024-10-07 00:10:07

海军工程大学研究者提出消磁站水下磁传感器的高精度定位方法

随着磁传感技术和数据处理技术的快速发展,铁磁性舰艇面临水下磁性水雷攻击、水中磁性监测系统探测和航空磁性探测等磁性兵器的威胁愈加严重。为提升舰艇对抗磁性兵器的能力,必须对舰艇实施磁性防护措施。实施磁性防护措施的重要前提是准确测量舰艇磁场。

目前,通常采用固定式消磁站水下磁传感器阵列来测量舰艇磁场,但受海底环境和安装工艺等条件制约,实际工程中水下磁传感器的安装位置与预设位置存在一定的偏差,直接影响着舰艇磁场的测量精度,进而降低舰艇磁性防护水平。因此,亟需对消磁站水下磁传感器进行高精度定位,提高舰艇磁场测量的准确性。

研究背景

磁隐身技术是保证水面舰船安全性、潜艇隐蔽性的必要手段,准确测量舰艇磁场是实施磁隐身的必要前提。目前,在消磁站海底平面布设水下磁传感器阵列是舰艇磁场测量的主要途径。由于海底环境复杂多变,消磁站水下磁传感器的安装工作尤为困难。在实际工程中水下磁传感器的安装位置与预设位置之间存在一定的位置偏差,依据现有安装工艺,各方向位置偏差幅值小于0.3m。

在舰艇磁场的测量过程中,幅值约0.3m的位置偏差可带来上百纳特的磁场测量误差,直接影响舰艇磁场的测量精度,降低舰艇磁性防护能力。一方面,磁性水雷和航空磁探的不断发展对舰艇磁性防护能力的要求愈发严格,另一方面,磁隐身新技术的发展对舰艇磁场测量精度提出了更高的要求。因此,亟需对消磁站水下磁传感器进行高精度定位,提高舰艇磁场测量的准确性。

论文意义及尚待进一步的研究工作

1 论文所解决的问题及意义

本文所得研究成果可有效解决固定式消磁站水下磁传感器的位置校正问题,为磁隐身新技术的发展奠定了基础,具有重要军事意义和工程实用价值。

2 尚待进一步的研究工作

三分量磁传感器阵列代替单分量磁传感器布设在固定式消磁站将是未来的趋势,本文针对单分量进行位置校正,虽同样可适用于三分量磁传感器,但未能充分利用Bx和By分量,因此,对三分量磁传感器磁场信息的充分应用及进一步提升位置校正的精度有待进一步研究。此外,在三分量磁传感器的磁场测量中,在位置校正的基础上对传感器姿态进行校正,从而提升舰艇磁场测量精度亦有待进一步研究。

论文方法及创新点

1 创新点

本文将通电螺线管线圈等效成磁偶极子,采用磁感应强度垂直分量Bz对消磁站水下磁传感器展开定位试验,如图1所示。

图1 典型消磁站模型及磁源布设

考虑到磁传感器测得到的磁场大小和变化(磁场梯度)随着与磁场的相对位置改变而改变。当耦合噪声ΔBz处于同一水平的情况下,水下磁传感器测得的某一方向磁场梯度越大,定位精度就越高,如图2所示。在此基础上,通过优化磁源位置,使磁传感器分别位于Bz在x、y方向的磁场高梯度区,据此构建方程组,提升磁传感器相应方向的定位精度。

图2 基于磁场梯度的定位精度提升机制

2 目标函数构建

如图3所示,以一定的间距l将消磁站码头平面划分成(M-1)×(N-1)的网格;分别计算磁源布设在不同网格节点时,磁传感器位置偏差区域在x、y方向的平均磁场梯度。将通电螺线管线圈等效成磁偶极子,通过磁传感器位置偏差区域x和y方向的平均磁场梯度优化确定线圈的两组磁源移动位置,结合深度测量数据分别建立方程组构造目标函数。

图3 典型消磁站水下磁传感器定位模型示意图

3 算法优化

采用采用动态学习策略多群体粒子群算法进行优化求解,该算法有两方面的提升,包括避免陷入局部最优和提高迭代效率,多群体粒子群动态学习策略如图4所示。

图4 动态学习机制

4 实验验证

为验证定位方法的操作可行性,根据数值模拟实验设计了约1:8.5的物理缩比模型实验如图5所示,按照实际消磁站的空间位置关系进行尺寸缩比,对5种位置偏差开展了位置校正实验,平均误差为5mm,相对误差为0.24%。因物理缩比实验中传感器测得的磁感应强度垂直分量与缩比前处于同一水平,位置误差可按缩比尺寸(1:8.5)放大,放大后的平均位置误差为0.043m,与数值模拟实验结果基本一致,验证了该方法的有效性。

图5 模型实验现场

结论

通过典型消磁站尺寸下的数值模拟实验与物理缩比模型实验证明了该方法的有效性,得出以下主要结论:

1)对位置校正误差随磁源移动位置数量k的影响关系进行了量化研究。研究表明,在网格间距l为2m的情况,当磁源移动位置数量k达到12次时,位置校正误差不再随k的增加而降低,基本达到饱和状态。

2)通过数值模拟实验,系统分析了对深度传感器精度、环境磁噪声等因素对水下磁传感器位置校正的影响规律,其中环境磁噪声带来的影响最大;并开展了不同位置偏差状态的水下磁传感器定位数值模拟实验,校正后传感器平均误差的均值为0.023m,最大误差的均值为0.056m,方差的均值为2.26×10-4m2,满足消磁站内舰艇磁场测量要求。

3)设计了典型消磁站的物理缩比模型实验,实验结果表明,传感器的平均误差为5mm,按缩比尺寸(1:8.5)放大为0.043m,与数值模拟实验的结果基本一致,验证了所提方法的有效性和准确性。

作者介绍

王玉芬,硕士研究生,研究方向为电磁定位、电磁环境及其防护技术等。

周国华,教授,硕士生导师,研究方向为电磁定位、电磁环境及其防护技术、舰艇磁性建模和舰艇消磁等。

吴轲娜,讲师,研究方向为工程电磁场教学、舰船电磁防护等。

本工作成果发表在2024年第4期《电工技术学报》,论文标题为“消磁站水下磁传感器定位方法”。本课题得到国家自然科学基金项目和海军工程大学自主立项项目的支持。

科普 磁传感器

我们伟大中华祖先的四大发明之一——指南针,可谓是无人不知啊,对于现代传感器技术来讲,它可算得上是磁传感器的鼻祖了。

而在当今的电子时代,磁传感器在电机、电力电子技术、汽车工业、工业自动控制、机器人、办公自动化、家用电器及各种安全系统等方面都有着广泛的应用。

磁传感器

磁传感器是一种把磁场、电流、应力应变、温度、光等外界因素引起的敏感元件磁性能变化转换成电信号,以这种方式来检测相应物理量的器件。用于感测速度、运动和方向,应用领域包括汽车、无线和消费电子、军事、能源、医疗和数据处理等。

磁传感器市场按照技术进步的发展,主要分为四大类:霍尔效应(Hall Effect)传感器、各向异性磁阻(AMR)传感器、巨磁阻(GMR)传感器隧道磁阻(TMR)传感器

其中,霍尔效应传感器的历史最悠久,获得广泛应用。随着持续的技术研发,各种磁传感器诞生,并拥有更优异的性能、更高的可靠性。

霍尔效应(Hall Effect)传感器1879 年,美国物理学家霍尔在研究金属导电机制时发现了霍尔效应。但因金属的霍尔效应很弱而一直没有实际应用案例,直到发现半导体的霍尔效应比金属强很多,利用这种现象才制作了霍尔元件。

在半导体薄膜两端通以控制电流 I,并在薄膜的垂直方向施加磁感应强度为 B 的匀强磁场,半导体中的电子与空穴受到不同方向的洛伦兹力而在不同方向上聚集,在聚集起来的电子与空穴之间会产生电场,电场强度与洛伦兹力产生平衡之后,不再聚集,这个现象叫做霍尔效应。在垂直于电流和磁场的方向上,将产生的内建电势差,称为霍尔电压 U。

霍尔电压 U 与半导体薄膜厚度 d,电场 B 和电流 I 的关系为 U=k(IB/d)。这里 k 为霍尔系数,与半导体磁性材料有关。

霍尔效应示意图

霍尔传感器利用霍尔效应的原理制作,主要有霍尔线性传感器、霍尔开关和磁力计三种。

1. 线性型霍尔传感器由霍尔元件、线性放大器和射极跟随器组成,它输出模拟量。输出电压与外加磁场强度呈线性关系,如下图所示,在 B1~B2 的磁感应强度范围内有较好的线性度,磁感应强度超出此范围时则呈现饱和状态。

线性型霍尔传感器工作原理

霍尔线性器件拥有很宽的磁场量测范围,并能识别磁极。其应用领域有电力机车、地下铁道、无轨电车、铁路等,还可用于变频器中用于监控电量、光伏直流柜监测光伏汇流箱实时输出电流的作用、电动机保护等。线性霍尔传感器还可以用于测量位置和位移,霍尔传感器可用于液位探测、水流探测等。

2. 开关型霍尔传感器由稳压器、霍尔元件、差分放大器,斯密特触发器和输出级组成,它输出数字量。

开关型霍尔传感器工作原理

霍尔开关器件无触点、无磨损、输出波形清晰、无抖动、无回跳、位置重复精度高,工作温度范围宽,可达 -55℃~150℃。开关型霍尔传感经过一次磁场强度的变化,则完成了一次开关动作,输出数字信号,可以计算汽车或机器转速、ABS 系统中的速度传感器、汽车速度表和里程表、机车的自动门开关、无刷直流电动机、汽车点火系统、门禁和防盗报警器、自动贩卖机、打印机等。

3. 磁力计

是利用霍尔效应产生的电势差来测算外界磁场的大小和极性。磁力计是采用 CMOS 工艺的平面器件。工艺相对一般 IC 更为简单,一般采用 P 型衬底上 N 阱上形成传感器件,通过金属电极将传感器与其他电路(如放大器、调节处理器等)相连。

但这样设计的的霍尔传感器只能感知垂直于管芯表面的的磁场变化,因此增加了磁通集中器(magnetic flux concentrator),工艺上来讲就是做原来的管芯上增加一层坡莫合金,可探测平行于管芯方向的磁场。由此,霍尔传感器实现了从单轴到三轴磁力计的跨越式发展。

图(a)增加磁通集中器的霍尔传感器的顶视图 图(b)增加磁通集中器的霍尔传感器的剖面图

磁力计广泛应用于智能手机、平板电脑和导航设备等移动终端,拥有巨大的市场前景。同时,磁力计可以与加速度计组成 6 轴电子罗盘,三种惯性传感器(加上陀螺仪)组合在一起还能实现 9 轴组合传感器,构成更强大的惯性导航产品。

各向异性磁阻(AMR)传感器

某些金属或半导体在遇到外加磁场时,其电阻值会随着外加磁场的大小发生变化,这种现象叫做磁阻效应,磁阻传感器利用磁阻效应制成。

1857 年,Thomson 发现坡莫合金的的各向异性磁阻效应。对于有各向异性特性的强磁性金属, 磁阻的变化是与磁场和电流间夹角有关的。我们常见的这类金属有铁、钴、镍及其合金等。

当外部磁场与磁体内建磁场方向成零度角时, 电阻是不会随着外加磁场变化而发生改变的;但当外部磁场与磁体的内建磁场有一定角度的时候, 磁体内部磁化矢量会偏移,薄膜电阻降低, 我们对这种特性称为各向异性磁电阻效应(Anisotropic Magnetoresistive Sensor,简称 AMR)。磁场作用效果下图。

坡莫合金的 AMR 效应

磁阻变化值与角度变化的关系

薄膜合金的电阻 R 就会因角度变化而变化,电阻与磁场特性是非线性的,且每一个电阻并不与唯一的外加磁场值成对应关系。从上图中,我们可以看到,当电流方向与磁化方向平行时,传感器最敏感,在电流方向和磁化方向成 45 度角度时,一般磁阻工作于图中线性区附近,这样可以实现输出的线性特性。

AMR 磁传感器的基本结构由四个磁阻组成了惠斯通电桥。其中供电电源为 Vb,电流流经电阻。当施加一个偏置磁场 H 在电桥上时,两个相对放置的电阻的磁化方向就会朝着电流方向转动,这两个电阻的阻值会增加;而另外两个相对放置的电阻的磁化方向会朝与电流相反的方向转动,该两个电阻的阻值则减少。通过测试电桥的两输出端输出差电压信号,可以得到外界磁场值。

AMR 磁阻传感器等效电路

各向异性磁阻(AMR)技术的优势有以下几点:

1. 各向异性磁阻(AMR)技术最优良性能的磁场范围是以地球磁场为中心,对于以地球磁场作为基本操作空间的传感器应用来说,具有广大的运作空间,无需像霍耳元件那样增加聚磁等辅助手段。

2. 各向异性磁阻(AMR)技术是唯一被验证,可以达到在地球磁场中测量方向精确度为一度的半导体工艺技术。其他可达到同样精度技术都是无法与半导体集成的工艺。因此,AMR 可与 CMOS 或 MEMS 集成在同一硅片上并提供足够的精确度。

3. AMR 技术只需一层磁性薄膜,工艺简单,成本低,不需要昂贵的制造设备,具有成本优势。

4. AMR 技术具有高频、低噪和高信噪比特性,在各种应用中尚无局限性。

AMR 磁阻传感器可以很好地感测地磁场范围内的弱磁场测量,制成各种位移、角度、转速传感器,各种接近开关,隔离开关,用来检测一些铁磁性物体如飞机、火车、汽车。其它应用包括各种导航系统中的罗盘,计算机中的磁盘驱动器,各种磁卡机、旋转位置传感、电流传感、钻井定向、线位置测量、偏航速率传感器和虚拟实景中的头部轨迹跟踪。

巨磁阻(GMR)传感器

与霍尔(Hall)传感器和各向异性磁阻(AMR)传感器相比,巨磁阻(GMR, Giant Magneto Resistance)传感器要年轻的多!这是因为 GMR 效应的发现比霍尔效应和 AMR 效应晚了 100 多年。

1988 年,德国科学家格林贝格尔发现了一特殊现象:非常弱小的磁性变化就能导致磁性材料发生非常显著的电阻变化。同时,法国科学家费尔在铁、铬相间的多层膜电阻中发现,微弱的磁场变化可以导致电阻大小的急剧变化,其变化的幅度比通常高十几倍。费尔和格林贝格尔也因发现巨磁阻效应而共同获得 2007 年诺贝尔物理学奖。

一般的磁铁金属,在加磁场和不加磁场下电阻率的变化为 1%~3%,但铁磁金属 / 非磁性金属 / 铁磁金属构成的多层膜,在室温下可以达到 25%,低温下更加明显,这也是巨磁阻效应的命名缘由。

GMR 和 AMR 在外加磁场下电阻率变化示意图

“巨”(giant)来描述此类磁电阻效应,并非仅来自表观特性,还由于其形成机理不同。常规磁电阻源于磁场对电子运动的直接作用,呈各向异性磁阻,即电阻与磁化强度和电流的相对取向有关。相反,GMR 磁阻呈各向同性,与磁化强度和电流的相对取向基本无关。

巨磁阻效应仅依赖于相邻磁层的磁矩的相对取向,外磁场的作业只是为了改变相邻铁磁层的磁矩的相对取向。除此以外,GMR 效应更重要的意义是为进一步探索新物理——比如隧穿磁阻效应(TMR: Tunneling Magnetoresistance)、自旋电子学(Spintronics)以及新的传感器技术奠定了基础。

GMR 效应的首次商业化应用是 1997 年,由 IBM 公司投放市场的硬盘数据读取探头。到目前为止,巨磁阻技术已经成为全世界几乎所有电脑、数码相机、MP3 播放器的标准技术。

GMR 传感器的材料结构

具有 GMR 效应的材料主要有多层膜、颗粒膜、纳米颗粒合金薄膜、磁性隧道结合氧化物、超巨磁电阻薄膜等五种材料。其中自旋阀型多层膜的结构在当前的 GMR 磁阻传感器中应用比较广泛。

自旋阀主要有自由层(磁性材料 FM),隔离层(非磁性材料 NM),钉扎层(磁性材料 FM)和反铁磁层(AF)四层结构。

自旋阀 GMR 磁阻传感器基本结构

GMR 磁阻传感器由四个巨磁电阻构成惠斯通电桥结构,该结构可以减少外界环境对传感器输出稳定性的影响,增加传感器灵敏度。当相邻磁性层磁矩平行分布,两个 FM/NM 界面呈现不同的阻态,一个界面为高阻态,一个界面为低阻态,自旋的传导电子可以在晶体内自由移动,整体上器件呈现低阻态;而当相邻磁性层磁矩反平行分布,两种自旋状态的传导电子都在穿过磁矩取向与其自旋方向相同的一个磁层后,遇到另一个磁矩取向与其自旋方向相反的磁层,并在那里受到强烈的散射作用,没有哪种自旋状态的电子可以穿越 FM/NM 界面,器件呈现高阻态。

平行磁场和反平行磁场作用下的等效电路图

GMR 磁阻传感器商业化时间晚于霍尔传感器和 AMR 磁阻传感器,制造工艺相对复杂,生产成本也较高。但其具有灵敏度高、能探测到弱磁场且信号好,温度对器件性能影响小等优点,因此市场占有率呈稳定状态。GMR 磁阻传感器在消费电子、工业、国防军事及医疗生物方面均有所涉及。

隧道磁阻(TMR)传感器早在 1975 年,Julliere 就在 Co/Ge/Fe 磁性隧道结(MagneticTunnelJunctions,MTJs)中观察到了 TMR(Tunnel Magneto-Resistance)效应。但是,这一发现当时并没有引起人们的重视。在此后的十几年里,有关 TMR 效应的研究进展十分缓慢。在 GMR 效应的深入研究下,同为磁电子学的 TMR 效应才开始得到重视。2000 年,MgO 作为隧道绝缘层的发现为 TMR 磁阻传感器的发展契机。

2001 年,Butler 和 Mathon 各自做出理论预测:以铁为铁磁体和 MgO 作为绝缘体,隧道磁电阻率变化可以达到百分之几千。同年,Bowen 等首次用实验证明了磁性隧道结(Fe/MgO/FeCo)的 TMR 效应。2008 年,日本东北大学的 S. Ikeda, H. Ohno 团队实验发现磁性隧道结 CoFeB/MgO/CoFeB 的电阻率变化在室温下达到 604%,在 4.2K 温度下将超过 1100%。TMR 效应具有如此大的电阻率变化,因此业界越来越重视 TMR 效应的研究和商业产品开发。

TMR 元件在近年才开始工业应用的新型磁电阻效应传感器,其利用磁性多层膜材料的隧道磁电阻效应对磁场进行感应,比之前所发现并实际应用的 AMR 元件和 GMR 元件具有更大的电阻变化率。我们通常也用磁隧道结(Magnetic Tunnel Junction,MTJ)来代指 TMR 元件,MTJ 元件具有更好的温度稳定性,更高的灵敏度,更低的功耗,更好的线性度,相对于霍尔元件不需要额外的聚磁环结构,相对于 AMR 元件不需要额外的 set/reset 线圈结构。

TMR 磁阻传感器的材料结构及原理

从经典物理学观点看来,铁磁层(F1)+绝缘层(I)+铁磁层(F2)的三明治结构根本无法实现电子在磁层中的穿通,而量子力学却可以完美解释这一现象。当两层铁磁层的磁化方向互相平行,多数自旋子带的电子将进入另一磁性层中多数自旋子带的空态,少数自旋子带的电子也将进入另一磁性层中少数自旋子带的空态,总的隧穿电流较大,此时器件为低阻状态;

当两层的磁铁层的磁化方向反平行,情况则刚好相反,即多数自旋子带的电子将进入另一磁性层中少数自旋子带的空态,而少数自旋子带的电子也进入另一磁性层中多数自旋子带的空态,此时隧穿电流较小,器件为高阻状态。

可以看出,隧道电流和隧道电阻依赖于两个铁磁层磁化强度的相对取向,当磁化方向发生变化时,隧穿电阻发生变化,因此称为隧道磁电阻效应。

TMR 磁化方向平行和反平行时的双电流模型

TMR 元件在近年才开始工业应用的新型磁电阻效应传感器,其利用磁性多层膜材料的隧道磁电阻效应对磁场进行感应,比之前所发现并实际应用的 AMR 元件和 GMR 元件具有更大的电阻变化率。我们通常也用磁隧道结(Magnetic Tunnel Junction,MTJ)来代指 TMR 元件,MTJ 元件具有更好的温度稳定性,更高的灵敏度,更低的功耗,更好的线性度,相对于霍尔元件不需要额外的聚磁环结构,相对于 AMR 元件不需要额外的 set/reset 线圈结构。

下表是霍尔元件、AMR 元件、GMR 元件以及 TMR 元件的技术参数对比,可以更清楚直观的看到各种技术的优劣。

霍尔元件、AMR 元件、GMR 元件以及 TMR 元件的技术参数对比

作为 GMR 元件的下一代技术,TMR(MTJ)元件已完全取代 GMR 元件,被广泛应用于硬盘磁头领域。相信 TMR 磁传感技术将在工业、生物传感、磁性随机存储(Magnetic Random Access Memory,MRAM)等领域有极大的发展与贡献。

磁传感器的发展,在本世纪 70~80 年代形成高潮。90 年代是已发展起来的这些磁传感器的成熟和完善的时期。

磁传感器的应用十分广泛,已在国民经济、国防建设、科学技术、医疗卫生等领域都发挥着重要作用,成为现代传感器产业的一个主要分支。在传统产业应用和改造、资源探查及综合利用、环境保护、生物工程、交通智能化管制等各个方面,它们发挥着愈来愈重要的作用。

相关问答

怎么打开手机里的磁场 传感器 ?

红米手机霍尔感应器怎样打开具体如下:1.红米手机霍尔感应器是一种磁场传感器,就是在手机屏幕的听筒左侧,就是为了适应智能皮套。2.红米的霍尔感应器就是小...

曲轴 位置传感器 在哪个地方

[最佳回答]曲轴位置传感器通常安装在曲轴前端(皮带轮处)和曲轴后端靠近飞轮处或曲轴中部。早期型号也安装在分电器中,分电器是控制系统中最重要的传感器之一。...

磁阻式 传感器 工作原理?

磁阻传感器是基于磁阻效应工作原理,其核心部分采用一片特殊金属材料,其电阻值随外界磁场的变化而变化,通过外界磁场的变化来测量物体的变化或状况。磁阻传感器...

磁性传感器 怎么检测好坏?

将汽车数字式万用表置于交流(AC)挡,按压功能转换按键选择“AC”与“Hz”,以便同时对传感器输出的交流电压和频率进行检测,然后将两表笔连接在磁电式转速传...

风骏7曲轴 传感器 在什么 位置 ?

风骏7的曲轴传感器位于发动机的曲轴上方,通常位于曲轴前部或后部。该传感器的作用是监测曲轴的转速和位置,以便发动机控制单元(ECU)能够准确计算点火时机和燃...

磁性 感应器怎么接线?

气缸磁性传感器D-A93与直流电源的接线:气缸磁性传感器D-A93的正极(橙色线)与24V直流电源的正极相连;气缸磁性传感器D-A93的包极(蓝色线)与24V直流电源的负...

贴片 磁性 霍尔 传感器 测量方法?

1、将数字万用表拨至二极管检测档位,红表笔接霍尔传感器①脚,黑表笔接中间②脚,万用表显示若显示1408即为正常。2、红表笔不动,黑表笔接③脚,万用表若显示1...

门的感应器装什么 位置 ?

如果需要安装门窗传感器的门窗形状特殊,不便于安装门窗传感器,建议自行或请懂得五金安装的人员制作安装基架,以满足上述安装要求。2、卷闸门有专用的门窗传感...

某同学尝试用DIS 传感器 测量周期.如图用一个 磁性 小球代替原...

[最佳回答](1)单摆做小角度摆动,当磁感应强度测量值最大时,磁性小球位于最低点(或平衡位置).若测得连续N个磁感应强度最大值之间的时间间隔为t,是N-12个周期,...

磁罗盘的原理?

磁罗盘根据指南针原理制成的,用以指示方位的仪器,又称磁罗经。主要由若干平行排列的磁针、刻度盘和磁误差校正装置组成,磁针固装在刻度盘背面,在地磁影响下,...

展开全部内容