上海羊羽卓进出口贸易有限公司

ccd图像传感器基础与应用 纯干货分享:CCD图像传感器知识全解,超详细!

发布时间:2024-10-07 04:10:24

纯干货分享:CCD图像传感器知识全解,超详细!

今天给大家介绍CCD图像传感器,关注我们的朋友会很明显的知道,鼎易鸿基&万酷电子在介绍产品扫描枪的时候会有这样一句话“采用工业级高性能线性CCD影像识别技术”,这是CCD图像传感器应用的一方面,今天我们就来细说一下关于CCD图像传感器。

CCD(charge coupled devices)即电荷耦合器件,是70年代发展起来的新型半导体光电器件,由于它有光电转换、信息存储、延时和将电信号按顺序传送等功能,且集成度高、功耗低,一次随后得到飞速发展,是图像采集及数字化处理必不可少的关键器件,广泛应用于科学、教育、医学、商业、工业、军事和消费领域。

CCD图像传感器是按一定规律排列的MOS(金属—氧化物—半导体)电容器组成的阵列。在P型或N型硅衬底生长一层很薄(约120NM)的二氧化硅,再在二氧化硅薄层上依次序沉积金属或掺杂多晶硅电极(栅极),形成规则的MOS电容器阵列,再加上两端的输入及输出二极管就构成了CCD芯片。

【基本结构】

CCD基本结构分为两部分:

1.MOS(金属—氧化物—半导体)光敏元阵列

电荷耦合器件是在半导体硅片上制作成百上千(万)个光敏元,一个光敏元又称一个像素,在半导体硅平面上光敏元按线阵或面阵有规则地排列。MOS电容器是构成CCD的最基本单元。

2.读出移位寄存器

【电荷耦合器件的工作原理】

【分辨率】

分辨率是指CCD有多少像素,也就是CCD上有多少感光组件,分辨率是图像传感器的重要特征。(像素+分辨率长宽数值相乘,如:640X480=307200,就是30W像素)

CCD分辨率主要取决于CCD芯片的像素数。

其次,还受到传输效率的影响。高度集成的光敏单元可以获得高分辨率。但光敏单元的尺寸的减少将导致灵敏度的降低。

【CCD图像器件结构】

CCD作为图像敏感器使用时,其基本结构及工作方式有以下三种:

1.线阵CCD

图像从垂直于器件像元排列的方向扫描以记录在线阵的CCD上,读出时,每个成像的CCD像元,将电荷包转移到移位寄存器的一个单元(一个字,而不是一位),沿水平方式快速读出。

2.面阵帧转移CCD

成像单元与移位单元整帧地分开。在成像的积分时间内,CCD像元的一半面积记录图像,然后,在回扫时间内快速转移到挡光的另一半面积的像元(位移寄存单元)上。对后一半像元以常规视频速率读出的同时,下一帧图像的积分开始进行。

3.面阵行转移CCD

每两行成像单元之间都夹有一行不透明的移位寄存单元,在成像时间内,传输门关闭,电荷包在成像单元上积分,不向寄存单元转移,已转移到寄存单元上的前一帧图像以视频速率读出。当传输门开启时,每行成像单元存储的图像电荷同时转移到对应的行间读出寄存器上。

【信号传输原理图】

线阵CCD信号传输:

面阵CCD信号传输:

【CCD基本工作原理】

基本功能: 电荷的存贮和转移

特点: 以电荷作为信号

1.信号电荷的产生

2.信号电荷的存储

当金属电极上加正电压时,由于电场作用,电极下P型硅区里空穴被排斥入地成耗尽区。对电子而言,是势能很低的区域,称“势阱”。有光线入射到硅片上时,光子作用下产生电子——空穴对空穴被电场作用排斥出耗尽区,而电子被附近势阱(俘获),此时势阱内吸的光子数与光强度成正比。

3.电荷转移原理

CCD电荷耦合器件是以电荷为信号;

读出位移寄存器也是MOS结构;

有三个十分邻近的电极组成一个耦合单元,在三个电极上分别施加脉冲波三相时钟脉冲。

4.电荷耦合信号输出

CCD信号电荷的输出的方式主要有电流输出、电压输出两种,以电压输出型为例:有浮置扩散放大器(FDA)、浮置栅放大器(FGA)

【图像传感器CCD和CMOS技术性能对比】

固体图像传感器(也称固体光电成像器件)有CCD与CMOS两种。CCD是“电荷耦合器件”(Charge Coupled Device)的简称,而CMOS是“互补金属氧化物半导体”(Complementary Metal Oxide Semiconductor)的简称。

1.信息读取方式的对比

CCD光电成像器件存贮的电荷信息,需要在二相或三相或四相时钟驱动脉冲的控制下,一位一位地实施转移后逐行顺序读取。

而CMOS光电成像器件的光学图像信息经光电转换后产生电流或电压信号,这个电信号不需要像CCD那样逐行读取,而是从CMOS晶体管开关阵列中直接读取的,可增加取像的灵活性。而CCD绝无此功能。

2.速度的对比

由上知,CCD成像器件需在二、三、四相时钟驱动脉冲的控制下,以行为单位一位一位地输出信息,所以速度较慢。

而CMOS成像器件在采集光电图像信号的同时就可取出电信号,它并能同时处理各单元的图像信息,所以速度比CCD成像器件快得多。由于CMOS成像器件的行、列电极可以被高速地驱动,再加上在同一芯片上做A/D转换,图像信号能快速地取出,因此它可在相当高的帧速下动作。如有些设计用来做机器视觉的CMOS,声称可以高达每秒1000个画面的帧速。

3.电源及耗电量的对比

由于CCD的像素由MOS电容构成,读取电荷信号时需使用电压相当大(至少12V)的二相或三相或四相时序脉冲信号,才能有效地传输电荷。因此CCD的取像系统除了要有多个电源外,其外设电路也会消耗相当大的功率。有的CCD取像系统需消耗2~5W的功率。

而CMOS光电成像器件只需使用一个单电源5V或3V,耗电量非常小,仅为CCD的1/8~1/10,有的CMOS取像系统只消耗20~50mW的功率。

4.成像质量的对比

CCD成像器件制作技术起步早,技术成熟,采用PN结或二氧化硅(sio2)隔离层隔离噪声,所以噪声低,成像质量好。

与CCD相比,CMOS的主要缺点是噪声高及灵敏度低,因为CMOS成像器件集成度高,各光电元件、电路之间距离很近,相互之间的光、电、磁干扰严重,噪声对图像质量影响很大,开始很长一段时间无法进入实用。后来,噪声的问题用有源像素(Active Pixel)设计及噪声补正线路加以降低。近年,随着CMOS电路消噪技术的不断进展,为生产高密度优质的CMOS成像器件提供了良好的条件。已有厂商声称,所开发出的技术,成像质量已不比CCD差。

CMOS成像器件的灵敏度低,是因为像素部分面积被用来制作放大器等线路。在固定的芯片面积上,除非采用更精细的制造工艺,否则为了维持相当水准的灵敏度,成像器件的分辨率不能做得太高(反过来说,固定分辩率的传感器,芯片尺寸无法做得太小)。但目前,利用0.18μm 制造技术己开发出了4096×4096超高分辨率的CMOS图像传感器。

鼎酷IOT部落(dkiot888)是由鼎易鸿基&万酷电子联合出品,专注于为大家提供物联网精髓的新媒体平台。我们关注物联网行业最新动态,专注做您的物联网口袋知识库,旨在搭建共同学习的知识平台,让您学得方便,聊得畅快;鼎酷IOT部落用心做大家的“良仆”。各项内容鼎酷IOT 部落微信公众号同步。物联网行业顶尖产品咨询也欢迎留言。

CCD图像传感器——颠覆人类记录影像的方式

维纳德 • 波利(左)和乔治 • 史密斯(右)在1969年发明了CCD技术

来源:文献[1]

2009年,维纳德 • 波利(Willard S. Boyle)和乔治 • 史密斯(George E. Smith)因为发明CCD(Charge-coupled Device,电荷耦合元件,或称为CCD图像传感器)而获得当年的诺贝尔物理学奖。

诺贝尔奖委员会主席约瑟夫·诺德格伦(Joseph Nordgren)在宣布该奖项的新闻发布会上说:“当今社会的记录影像的方式完全基于CCD的研究。” “这项研究的实际意义是巨大的……它改变了我们的生活,不仅在科学领域,而且在整个社会领域。”

胶片时代

在1975年数码相机发明以前,人们记录影像的方式是使用胶片。它的工作过程可以概述为:光线经过照相机镜头,然后由快门的速度来决定曝光量的多少。光线使胶片上的银盐产生化学反应,最后在胶片上生成影像的潜影。经过暗房里的冲洗形成影像并制成底片。利用调配将底片显影最终印出。

胶片摄影需要经过复杂的处理才能得到影像

[图片来源自网络]

CCD的发明

1969年10月,史密斯和波利在贝尔实验室吃午餐时,讨论产生了灵感。午餐后继续探讨,当天就构想出了CCD这个无处不在的成像发明。不过,从造出样机到研制出科学家和摄影师都可以使用的实用技术,这条路漫长而艰难。尽管CCD后来主宰了天文学领域,但它在刚发明时分辨率非常低,根本派不上实际用场。当时CCD的信噪比很差,不大容易看得出它是否会有远大的前程。

第一个CCD器件

来源:文献[4]

第一个CCD集成器件

来源:文献[4]

早期的线性成像CCD

来源:文献[4]

在接下来的时间里,成百上千的科学家和工程师努力奋斗,逐步将CCD推向实用化,包括美国的仙童(Fairchild)、柯达泰克(Tektronix)和德州仪器(Texas Instruments,TI),以及日本的夏普(Sharp)、索尼(SONY)、东芝(Toshiba)和日本电气(NEC)等公司都作出了许多贡献。航天、科学和消费等方面的应用,都得益于为解决CCD问题而从不同渠道投入的经费,但是问题还是很棘手,那是一条非常艰苦的发展之路。

CCD的原理

CCD是一种半导体器件,能够把光学影像转化为数字信号。 CCD上植入的微小光敏物质称作像素(Pixel)。像素数越高,面积越大,成像质量就越高越清晰。CCD上有许多排列整齐的电容,能感应光线、储存信号并将影像转变成数字信号。经由外部电路的控制,每个小电容能将其所带的电荷转给相邻的图像处理器来形成图像。

MOS电容器是构成CCD的最基本单元,它是金属—氧化物—半导体(MOS)器件中结构最为简单的。

MOS电容器

来源:文献[4]

CCD的基本工作过程主要是信号电荷的产生、存储、转移和检测:

(1)信号电荷的注入(产生):在CCD中,电荷注入的方式可分为光注入和电注入两类。当光照射到CCD硅片上时,在栅极附近的半导体体内产生电子-空穴对,多数载流子被栅极电压排斥,少数载流子则被收集在势阱中形成信号电荷。

背照式光注入

来源:文献[8]

所谓电注入就是CCD通过输入结构对信号电压或电流进行采样,然后将信号电压或电流转换为信号电荷注入到相应的势阱中。电注入常用的有电流注入和电压注入两种方式。

电注入方式

来源:文献[8]

(2)信号电荷的存储:CCD工作过程的第二步是信号电荷的收集,就是将入射光子激励出的电荷收集起来成为信号电荷包的过程。

当向SiO表面的电极加正偏压时,P型硅衬底中形成耗尽区(势阱),耗尽区的深度随正偏压升高而加大。其中的少数载流子(电子)被吸收到最高正偏压电极下的区域内,形成电荷包(势阱)。对于N型硅衬底的CCD器件,电极加正偏压时,少数载流子为空穴。

电荷存储

来源:文献[8]

(3)信号电荷的传输(耦合):CCD工作过程的第三步是信号电荷包的转移,就是将所收集起来的电荷包从一个像元转移到下一个像元,直到全部电荷包输出完成的过程。

电荷转移

来源:文献[7]

三相CCD中电荷的转移方式

(a)初始状态;(b) 电荷由①电极向②电极转移;(c) 电荷在①、②电极下均匀分布;(d) 电荷继续由①电极向②电极转移;(e) 电荷完全转移到②电极;(f) 三相交叠脉冲

来源:文献[8]

(4)信号电荷的检测:CCD工作过程的第四步是电荷的检测,就是将转移到输出级的电荷转化为电流或者电压的过程。

其中电荷输出类型,主要有三种:1)电流输出;2)浮置栅放大器输出;3)浮置扩散放大器输出。

电荷检测电路

来源:文献[8]

CCD工作过程示意图

来源:文献[6]

CCD图像传感器是按一定规律排列的MOS(金属—氧化物—半导体)电容器组成的阵列。 在P型或N型硅衬底上生长一层很薄(约120nm)的二氧化硅,再在二氧化硅薄层上依次序沉积金属或掺杂多晶硅电极(栅极),形成规则的MOS电容器阵列,再加上两端的输入及输出二极管就构成了CCD芯片。

按照像素排列方式的不同,可以将CCD分为线阵和面阵两大类。

线阵CCD每次扫描一条线,为了得到整个二维图像的视频信号,就必须用扫描的方法实现。线阵CCD又分为单沟道线阵CCD和双沟道线阵CCD。

单沟道线阵CCD:转移次数多、效率低。只适用于像素单元较少的成像器件。

双沟道线阵CCD:转移次数减少一半,它的总转移效率也提高为原来的两倍。

线阵CCD

来源:文献[6]

面阵CCD:按照一定的方式将一维线阵CCD的光敏单元及移位寄作器排列成二维阵列。就可以构成二维面阵CCD。面阵CCD同时曝光整个图像。

帧转移面阵CCD——优点:电极结构简单,感光区面积可以很小。缺点:需要面积较大暂存区。

帧转移面阵CCD结构及工作过程

来源:文献[6]

隔列转移面阵CCD——优点:转移效率大大提高。缺点:结构较为复杂。

隔列转移面阵CCD结构及工作过程

来源:文献[6]

CCD功能示意图

来源:文献[7]

CCD芯片结构

图片来源自网络

CCD的发展

CCD的发明具有划时代的意义,它的出现使得人类捕捉信息达85%的眼睛这个重要器官得到了极大扩展与延申。

促进CCD快速发展主要有三个因素:首先,CCD的尺寸小,重量轻,消耗功率少,超低噪声,动态范围较大,线性良好,可靠,耐用。第二,这种器件在形状、快速、外形质量和成本方面能与真空管抗衡。第三,空间成像应用需要新的探测器。

20世纪70年代,美国贝尔实验室成功研制了世界上第一只CCD,它的诞生使成像、摄像等技术呈现一次飞跃。1973年,仙童公司把CCD技术应用于商业领域,制造出第一只商用CCD成像器件,这开辟了CCD在工业领域的道路。80年代后期,CCD在大多数视频应用中取代了电子管。进入90年代后,CCD应用于分辨成像,广泛应用于专业电子照相、空间探测、X射线成像及其他科研领域。

两种CCD产品

图片来源自网络

市场应用的结果证明CCD是科学领域的一项重大技术变革。它在被忽视数十年之后,能获得2009年的诺贝尔奖可谓实至名归。

变革不停

但是,科学技术的进步一刻也不曾停止。1998年,CMOS图像传感器(Complementary Metal-Oxide-Semiconductor Image Sensor,CIS)诞生了。CMOS的光电信息转换功能与CCD的基本相似,区别就在于这两种传感器的光电转换后信息传送的方式不同。CMOS具有读取信息的方式简单、输出信息速率快、耗电少(仅为CCD芯片的1/10左右)、体积小、重量轻、集成度高、价格低等特点。从2008年开始,各大厂商都开始逐渐把背照式CMOS使用在不同的数码相机产品上。从此,CMOS图像传感器迅速发展。

CMOS取代CCD

图片来源自网络

科技不断发展,相信在未来的某一天,一定会有更多种类的传感器出现,这也只是时间的问题,到那时我们回望过去,看看我们曾经经历过的胶片时代、CCD时代和CMOS时代,一定会由衷的感叹科技日新月异的飞速发展。

参考文献

https://www.nobelprize.org/prizes/physics/2009/summary/

张汝京. 半导体产业背后的故事[M]. 清华大学出版社, 2013.

董艺婷. 摄影技术的发展及对当代社会的作用研究[D].哈尔滨师范大学,2016.

Smith, G. E. (2009). "The invention and early history of the CCD." Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 607(1): 1-6.

https://www.microscopyu.com/digital-imaging/introduction-to-charge-coupled-devices-ccds

https://www.mega-9.com/tech/tech-45.html

https://specinstcameras.com/what-is-a-ccd/

王庆有. 图像传感器应用技术[M]. 电子工业出版社, 2019.

https://www.docin.com/p-505990925.html

http://dc.yesky.com/88/31913588all.shtml

转载内容仅代表作者观点

不代表中科院物理所立场

来源:中科院半导体所

编辑:荔枝果冻

相关问答

CCD图像传感器 的原理及 应用 ?

原理:CCD传感器是一种新型光电转换器件,它能存储由光产生的信号电荷。当对它施加特定时序的脉冲时,其存储的信号电荷便可在CCD内作定向传输而实现自扫描。它...

cmos 图像传感器 怎么用?

CMOS图像传感器是一种多功能传感器,由于它兼具CCD图像传感器的性能,CMOS图像传感器还可应用于数字静态摄像机和医用小型摄像机等。CMOS摄像头在电子快门的控...

ccd 相机需要哪些配件?

必须有CCD图像传感器必须有驱动器,就是将TTL/LVTTL的时序信号转换为CCD所需的高低电压驱动信号。必须要有时序发生器,有专门的时序芯片,也可以用嵌入式处理...

ccd图像传感器 是一种什么传感器?

电荷耦合器件图像传感器CCD(ChargeCoupledDevice),它使用一种高感光度的半导体材料制成,能把光线转变成电荷,通过模数转换器芯片转换成数字信号,数字信号...

CCD 全称?

1、CCD,中文全称:电荷耦合元件。可以称为CCD图像传感器,也叫图像控制器。CCD是一种半导体器件,能够把光学影像转化为电信号。2、CCD上植入的微小光敏物质称...

CCD 指的是?

CCD的中文名称是电荷耦合器件,也被称为图像传感器、图像控制器和感光元件,主要的应用于数码摄影,天文学等领域。CCD是一种用电荷量表示信号大小,用耦合方式传...

佳能 ccd 购买注意事项?

购买佳能CCD时,首先要注意其像素和传感器大小,像素越高、传感器越大的CCD成像效果越好,但价格也较高。其次,选购时要注意CCD的品牌信誉度和售后服务。此外,...

CCD传感器 有什么好处?但为什么后来又被CMOS普遍取代了呢?

你好,CMOS之所以取代CCD,最根本的原因还是因为,后来,CMOS的制造简单,成本更低。关于这两种东西,我具体谈谈我的看法:影像传感器啊,现代影像文明的基石...在明暗...

卡片机的 ccd 是指的什么?

数码相机中的CCD指“电荷耦合器件”,是将光信号转换为电信号的一种图像传感器。另外数码相机中常用的图像传感器还有CMOS,即,互补金属氧化物半导体。CC...

ccd传感器 是屏幕吗?

CCD是图像传感器CCD既不是屏幕也不是镜头,而是负责光线感应、并把光信号转为电信号的感光元件,一般有CCD和CMOS两种,统称图像传感器。CCD的优势在于成像质量...

展开全部内容