i2c温度传感器 ROHM传感器套件测评(二):五个I2C接口传感器
ROHM传感器套件测评(二):五个I2C接口传感器
这个套件的8个传感器中有5个是I2C接口的数字传感器:
在 SensorShield 底板上,有5个位置可以插I2C传感器小板。不过因为工作电压范围不一致,不能全插上去一起用。这5个传感器都是自带AD转换的,所以直接输出数字量了,加上可配置能力,适应性更强。比如,在不需要采集数据的时候可以关闭内部功能以节省电力。
加速度传感器 KX022-1020
这大概是这套传感器中配置最为复杂的一个。它是一个三轴加速度传感器,也就是能感知三维空间空间中的加速度方向。关于这个测量结果的物理意义我需要说明一下,因为两天前我自己也没想清楚:为什么加速度计放在地上不动,也测出来有加速度(大小是一个g,重力加速度的值),而不是加速度为0 ? 它明明就没有运动嘛。倘若把加速度计连同附属电路装置抛向空中,必然读出加速度是0,尽管这个时候它是向地面加速的。和人们的直观感受完全相反啊!实际是这样:运动是相对的,参照系不同,速度就不同(中学物理讲的是以静止或者匀速运动物体为参照,但是怎么定义静止呢?);加速度也会随参照系而变,因为是速度的微分(例子:伽利略实验,两个铁球同时着地)。当以地球表面自由落体的物体为参照时,这个加速度计的测量值就可以被解释了:放在桌上不动,它就有一个竖直向上的加速度。
对于加速度计,引力是不能让它产生测量值的;人也一样,人其实不能直接感受到引力的存在。或许看我这段话的朋友要反驳了:没有引力存在我不就一蹦飞上天了么?注意,人蹦起来离开地面时候是失重的,比如蹦极的时候闭上眼睛其实并不知道引力在什么方向。反而是我们站着、坐着或者躺着的时候,受到地面、椅子或者床的向上的拖着的力——身体切实感受到了,却习以为常而被忽略了。所以结论是:人站在地球上,和坐在原离太阳系正以9.8m/s/s加速的宇宙飞船里,感受到的“重力”是一样的。
回到说这个传感器,其内部在AD转换之后的数字部分还有DSP和FIFO buffer,才把数据送到接口电路,这是比直接读取AD转换值更高级的功能。在手册中对DSP的功能有描述,我没有工夫来详细研究了。KX022-1020 具有16-bit数字分辨率,最大每秒1600次转换输出的能力,最大正负8g的量程,对消费类一般运动检测(不是碰撞冲击)的话应该够用了。我没有惯性传感器的实际应用经验,就不作多的评价。作为类似手机重力方向感应的倾角检测应用的话,这个加速度计是足够。接口它是支持SPI和I2C的,SPI支持的速率更高,但是套件中只提供了I2C的连接方式。
KX022 有57个8位的寄存器,好在简单的测试只配CNTL1, CNTL2之后就可以读数了。
[C] 纯文本查看 复制代码
?
01020304050607080910111213141516171819202122232425262728293031323334353637383940414243void test_KX022(char slave_addr){ uint8_t buf[256]; i2c_w1rn(slave_addr,0x0f,buf,1); // check WHOAMI if(buf[0]==0x14) uart_wstr("\r\nKX022 detected."); else { uart_wstr("\r\nNo response."); return; } buf[0]=0x18; // CNTL1,2 buf[1]=0x60; // set RES, DRDYE buf[2]=0x00; i2c_write_n(slave_addr, buf, 3); _delay_ms(100); uart_wstr("\r\nConfigured mode"); buf[0]=0x18; // CNTL1 buf[1]=0xE0; // operating mode i2c_write_n(slave_addr, buf, 2); uart_wstr("\r\nACC operating"); _delay_ms(100); for(;;) { _delay_ms(10); i2c_w1rn(slave_addr,0x13,buf,1); // read INS2 if(buf[0] & 0x10) { int16_t acc[3]; i2c_w1rn(slave_addr,0x06,(uint8_t *)acc,6); // read data uart_wstr("\r\nXYZ: "); print_i16(acc[0]); uart_wstr(","); print_i16(acc[1]); uart_wstr(","); print_i16(acc[2]); } }}在小板上丝印标注了加速度的XYZ敏感方向。若SensorShield水平放置,Z轴是向上的。
本测试是正负2g的量程范围,每秒50次转换输出。板子平放时候串口输出:
大约是z方向正向(向上)的一个g加速度,符合前面的推断。因为没有严格水平,加速度方向没有严格在z方向上。倒过来朝下扣着,则Z读数应该变成负的:
侧着竖起来放看一下结果:
还是蛮好玩的。至于自由落体,现在这样拖着USB线就没法测试了(需要做个电池供电,把数据存到SD卡或者无线发送出来......)
RGB颜色传感器 BH1745
这是一个接收可见光的传感器,所以封装是透明的。
我先谈下我对“颜色”的理解。眼睛只所以能感受颜色,是因为有光进入了眼睛,刺激到了视网膜上的感光细胞。我们说一个不发光的物体,比如一块布料是什么颜色的,是指它的反射光。但是反射光必然又和入射光有关系,比如,在红光灯照射下,绿色的物体也只能反射红光。所以日常生活中谈论物体的颜色还有一个假设前提,就是在自然光下。但是,这还是定性讨论,自然光还没有定义呢。太阳光是具有连续光谱的,在人眼可见部分光谱的能量分布也和自然环境相关。一般笼统地把太阳光称为七种颜色的光组成,事实上并非七种单一波长的光组成。人眼能识别颜色,是因为视网膜上有3种视锥细胞,对不同波长有不同的敏感度:
这好比人眼睛有三种色彩传感器。于是,有同色异谱现象(不同的光谱分布可能产生同样的颜色感知),有了现在的RGB三基色系统来重现(模拟)自然界的色彩。
ROHM这个 BH1745NUC 传感器的颜色敏感曲线和人眼是有所不同的
除了RGB输出,还有一个"Clear color"通道。寄存器表比前面的加速度计要简单了
测试程序:
[C] 纯文本查看 复制代码
?
010203040506070809101112131415161718192021222324252627282930313233343536373839void test_BH1745NUC(char slave_addr){ uint8_t buf[256]; i2c_w1rn(slave_addr,0x92,buf,1); // check ID if(buf[0]==0xE0) uart_wstr("\r\nBH1745NUC detected."); else { uart_wstr("\r\nNo response."); return; } buf[0]=0x41; buf[1]=0x00; // default, 160ms buf[2]=0x10; // RGBC EN buf[3]=0x02; i2c_write_n(slave_addr, buf, 4); uart_wstr("\r\nWrite CONTROL1,2,3"); for(;;) { i2c_w1rn(slave_addr,0x42,buf,1); // MODE_CONTROL2 if(buf[0] & 0x80) // VALID { uint16_t *d=(uint16_t *)buf; i2c_w1rn(slave_addr,0x50,buf,8); // read RGBC uart_wstr("\r\nRGBC: "); uart_wdec(d[0]); uart_wstr(", "); uart_wdec(d[1]); uart_wstr(", "); uart_wdec(d[2]); uart_wstr(", "); uart_wdec(d[3]); uart_wstr(" "); } }}我用一块PCB板将传感器盖住,在室内环境下可以实现读数全为0. 在我的工作桌上(灯头是七年半前制作的,四只Cree XR-E Q3 5C串联),输出结果
而放到被太阳光照射的地方(隔着窗玻璃,空气还有雾霾),可以发现光更强
调整一下板子的角度,让太阳光接近垂直照射到传感器上,数值应该是更大的:
在太阳光下阅读,对人眼的刺激就太大了。光过强也不好。我的另一盏LED台灯(前年制作的,用了较新的,且色温更低的LED)下:
这个LED的红色成分明显加强了,是更接近白炽灯的。但家中已没有白炽灯了,无法测试对比数据。
另外一个用AA电池的LED小灯下,LED距离传感器比较近测量:
这个的蓝光成分就高了,作为照明用眼睛也不舒适。应急用不要紧。
把传感器靠在我现在的显示器屏幕上,显示白色区域:
最后玩一个,3mm的高亮度红色LED,距离传感器十几mm照射:
作为能定量分析光照颜色的传感器,BH1745NUC 在环境监测、智能家居方面可以发挥优势。直接作为视力保护的照明条件评估,我认为也是个理想的应用。
接近和环境光传感器 RPR-0521RS
这是一个复合传感器,把光传感器功能和红外LED结合在一起,做成了反射式的接近检测传感器加环境光(可见光和红外)传感器。用手册中的这个图可以说明它的原理和用途:
检测需要的灵敏度和阈值是需要设置后才能用的(比如需要产生中断输出). 寄存器表如下,和前一个颜色传感器的风格一致。
我的测试程序:
[C] 纯文本查看 复制代码
?
010203040506070809101112131415161718192021222324252627282930313233343536373839404142434445464748void test_RPR0521(char slave_addr){ uint8_t buf[256]; i2c_w1rn(slave_addr,0x92,buf,1); // check ID if(buf[0]==0xE0) uart_wstr("\r\nRPR0521 detected."); else { uart_wstr("\r\nNo response."); return; } buf[0]=0x41; buf[1]=0xC7; // enable ALS, PS, 100ms/400ms buf[2]=0x00; // ALS Gain x1 buf[3]=0x20; // PS Gain x4 i2c_write_n(slave_addr, buf, 4); uart_wstr("\r\nWrite CONTROL regs"); buf[0]=0x4A; buf[1]=0x06; // unlatched i2c_write_n(slave_addr, buf, 2); uart_wstr("\r\nWrite INTERRUPT reg"); buf[0]=0x51; buf[1]=0xfe; buf[2]=0xff; i2c_write_n(slave_addr, buf, 3); uart_wstr("\r\nWrite ALS TL"); for(;;) { i2c_w1rn(slave_addr,0x4a,buf,1); // INTERRUPT if(buf[0] & 0x40) // ALS status { uint16_t *d=(uint16_t *)buf; i2c_w1rn(slave_addr,0x44,buf,6); // read PS,ALS uart_wstr("\r\nPS: "); uart_wdec(d[0]); uart_wstr(", ALS: "); uart_wdec(d[1]); uart_wstr(", "); uart_wdec(d[2]); uart_wstr(" "); } }}在我的工作桌上,没有遮挡的情况下输出结果:
似乎这个环境光检测的“红外”通道对可见光也是有感应的。
拿一张纸片,平放在传感器上放10cm处,挡住灯光照射
接近检测稍有所响应(GAIN=4x),环境光检测可以看到明显变化了。距离再减到5cm
这个距离下接近检测是可靠的了。这也是手册中的测量条件。 环境光检测数进一步缩小。若距离更近,接近检测的数值会迅速增大。
我设想RPR-0521RS作为接近传感的用途是近距离的手势控制,或者机械装置里的近距离位置反馈。作为人体接近危险区域的报警用途之类则不合适,距离太短了。我上面的测试中接近传感的测量间隔是400ms,检测手势的速度不够。不过它是可以配置为最短10ms检测一次的,应该可以用。
气压传感器 BM1383GLV
气压传感器的意义很直观,它封装里面的传感器和外面空气是相通的(壳上有个小孔),测量空气压强。在平常接触到的电子设备中,大概是血压计用得最多,此外它也被用来间接测量海拔高度。
BM1383GLV这个型号的手册我下载不到,ROHM网站的链接一直是Access denied错误。我只能找到 BM1383AGLV 型号的手册,可能是改进型,但是区别有多少不得而知。根据描述,这俩都是内建温度补偿的气压传感器。我只好以 BM1383AGLV 为参照,写程序的时候发现寄存器操作有误再把Rohm网站上能下载的Arduino程序找来参考。
测试程序(因为没有把DRDY检测弄成功,就改为延时100ms后读取一次结果了):
[C] 纯文本查看 复制代码
?
01020304050607080910111213141516171819202122232425262728293031323334353637383940414243444546void test_BM1383GLV(char slave_addr){ uint8_t buf[256]; i2c_w1rn(slave_addr,0x0f,buf,2); // check ID if(buf[1]==0x31) uart_wstr("\r\nBM1383GLV detected."); else { uart_wstr("\r\nNo response."); return; } buf[0]=0x12; buf[1]=0x01; // POWER DOWN REG (active) i2c_write_n(slave_addr, buf, 2); _delay_ms(10); uart_wstr("\r\nLeave power down"); buf[0]=0x13; buf[1]=0x01; // RESET REG (active) i2c_write_n(slave_addr, buf, 2); _delay_ms(10); uart_wstr("\r\nLeave reset"); buf[0]=0x14; buf[1]=0xda; // Average 64, DRDY enable, continuous ?? not sure i2c_write_n(slave_addr, buf, 2); _delay_ms(10); uart_wstr("\r\nConfigured mode"); for(;;) { uint32_t p=0; _delay_ms(100); uart_wstr("\r\n"); i2c_w1rn(slave_addr,0x1c,buf,3); // read data *(uint8_t *)(&p)=buf[2]; *((uint8_t *)(&p)+1)=buf[1]; *((uint8_t *)(&p)+2)=buf[0]; p>>=2; uart_wstr("Pressure counts: "); uart_wdec(p); }}测量结果,这个数值除以2048就是百帕(hPa)单位的值。
估测数据的波动在0.1个百帕量级。那么对气压敏感程度如何?我拿出我的笔记本电脑来测试了,带着Nucleo, SensorShield边测边走。我住在4楼,走到楼下看测量数据已经有明显的变化了:
外面气温低,可能温度也影响了结果,也可能气压本来就跟温度有关。再上楼梯到4楼,在门外看看:
排除温度的变化,气压测量结果的确是有高度反映的。回到屋内稍暖和了一下,再看读数:
稍微有点变化。用气压测海拔本来就有精度范围的吧。不知道用这个传感器换算高度结果靠谱不。
三轴磁场传感器 BM1422GMV
这又是一个三轴传感器,测量磁场的方向和强度。主要的应用是电子罗盘,也就是测量地磁场来实现方向导航。在 BM1422GMV 内部集成了3个磁阻元件,经过AD转换输出12或14位的数据。
寄存器表:
工作流程图:
按照流程图写的测试程序:
[C] 纯文本查看 复制代码
?
010203040506070809101112131415161718192021222324252627282930313233343536373839404142434445464748495051void test_BM1422GMV(char slave_addr){ uint8_t buf[256]; i2c_w1rn(slave_addr,0x0d,buf,3); // check ID if(buf[0]==0x01 &&buf[1]==0x01 &&buf[2]==0x41) uart_wstr("\r\nBM1422GMV detected."); else { uart_wstr("\r\nNo response."); return; } buf[0]=CNTL1; buf[1]=0xC0; // Power enable, 14-bit, continuous mode i2c_write_n(slave_addr, buf, 2); uart_wstr("\r\nSet CNTL1"); buf[0]=CNTL4; buf[1]=0x0; buf[2]=0x0; i2c_write_n(slave_addr, buf, 3); uart_wstr("\r\nSet CNTL4"); buf[0]=CNTL2; buf[1]=0x08; // DREN i2c_write_n(slave_addr, buf, 2); uart_wstr("\r\nSet CNTL2"); buf[0]=CNTL3; buf[1]=0x40; // FORCE i2c_write_n(slave_addr, buf, 2); uart_wstr("\r\nSet CNTL2"); for(;;) { i2c_w1rn(slave_addr,STA1,buf,1); if(buf[0] & 0x40) { int16_t *d=(int16_t *)buf; i2c_w1rn(slave_addr,DATAX,buf,6); // read DATAX,Y,Z uart_wstr("\r\nDATA: "); print_i14(d[0]); uart_wstr(", "); print_i14(d[1]); uart_wstr(", "); print_i14(d[2]); uart_wstr(" "); } }}然而,测量结果很奇怪。首先是沿敏感轴改变方向后数值并不是变成反号,其次读数不是很稳定,还有换用不同的插座位置时读数也有差别。第一个问题我试图用设定Offset来校正,失败,未得到合适的结果。在默认的参数下,某个摆放朝向是这样的测量结果:
X轴方向不变,Y, Z轴都变成反方向再测:
看起来好象有个负的offset在里面,但这个误差也太大了。我怀疑是否是板子上的电流产生的磁场造成的干扰,但是现在没有办法去检验。最后一图上X轴数据的突然跳变也无法解释……
遗憾,作为地磁测量,我还没法把BM1422用起来。
数字温度传感器系统接口:SPI、I2C 、SMBus如何选
对于需要经常进行数据流传输的系统数据,SPI是首选,因为它拥有较快的时钟速率,速率可从几兆赫兹到几十兆赫兹。然而,对于系统管理活动,如读取温度传感器的读数和查询多个从器件的状态,或者需要多个主器件共存于同一系统总线上(系统冗余常会要求这一点),或者面向低功耗应用,这时I2C 或 SMBus将是首选接口。
图1:数字温度传感器简化框图
下面几部分将介绍每种串行总线及其优缺点。
1. SPI
SPI 是一种四线制串行总线接口,为主/从结构,四条导线分别为串行时钟(SCLK)、主出从入(MOSI)、主入从出(MISO)和从选(SS)信号。主器件为时钟提供者,可发起读从器件或写从器件操作。这时主器件将与一个从器件进行对话。当总线上存在多个从器件时,要发起一次传输,主器件将把该从器件选择线拉低,然后分别通过 MOSI 和 MISO 线启动数据发送或接收。
SPI 时钟速度很快,范围可从几兆赫兹到几十兆赫兹,且没有系统开销。SPI 在系统管理方面的缺点是缺乏流控机制,无论主器件还是从器件均不对消息进行确认,主器件无法知道从器件是否繁忙。因此,必须设计聪明的软件机制来处理确认问题。同时,SPI 也没有多主器件协议,必须采用很复杂的软件和外部逻辑来实现多主器件架构。每个从器件需要一个单独的从选择信号。总信号数最终为 n+3 个,其中 n 是总线上从器件的数量。因此,导线的数量将随增加的从器件的数量按比例增长。同样,在 SPI 总线上添加新的从器件也不方便。对于额外添加的每个从器件,都需要一条新的从器件选择线或解码逻辑。图 2 显示了典型的 SPI 读/写周期。在地址或命令字节后面跟有一个读/写位。数据通过 MOSI 信号写入从器件,通过 MISO 信号自从器件中读出。图 3显示了 I2C总线/SMBus以及SPI的系统框图。
图2:SPI 典型读/写周期
图3:(a)I2C总线/SMBus系统接口;(b)SPI 系统接口
2. I 2 C总线
I2C 是一种二线制串行总线接口,工作在主/从模式。二线通信信号分别为开漏 SCL 和 SDA 串行时钟和串行数据。主器件为时钟源。数据传输是双向的,其方向取决于读/写位的状态。每个从器件拥有一个唯一的 7 或 10 位地址。主器件通过一个起始位发起一次传输,通过一个停止位终止一次传输。起始位之后为唯一的从器件地址,再后为读/写位。
I2C总线速度为从0Hz到3.4MHz。它没有SPI 那样快,但对于系统管理器件如温度传感器来说则非常理想。I2C 存在系统开销,这些开销包括起始位/停止位、确认位和从地址位,但它因此拥有流控机制。主器件在完成接收来自从器件的数据时总是发送一个确认位,除非其准备终止传输。从器件在其接收到来自主器件的命令或数据时总是发送一个确认位。当从器件未准备好时,它可以保持或延展时钟,直到其再次准备好响应。
I2C允许多个主器件工作在同一总线上。多个主器件可以轻松同步其时钟,因此所有主器件均采用同一时钟进行传输。多个主器件可以通过数据仲裁检测哪一个主器件正在使用总线,从而避免数据破坏。由于 I2C总线只有两条导线,因此新从器件只需接入总线即可,而无需附加逻辑。
3. SMBus
SMBus是一种二线制串行总线,1996年第一版规范开始商用。它大部分基于I2C总线规范。和 I2C一样,SMBus不需增加额外引脚,创建该总线主要是为了增加新的功能特性,但只工作在100kHz且专门面向智能电池管理应用。它工作在主/从模式:主器件提供时钟,在其发起一次传输时提供一个起始位,在其终止一次传输时提供一个停止位;从器件拥有一个唯一的7或10位从器件地址。
SMBus与I2C总线之间在时序特性上存在一些差别。首先,SMBus需要一定数据保持时间,而 I2C总线则是从内部延长数据保持时间。SMBus具有超时功能,因此当SCL太低而超过35 ms时,从器件将复位正在进行的通信。相反,I2C采用硬件复位。SMBus具有一种警报响应地址(ARA),因此当从器件产生一个中断时,它不会马上清除中断,而是一直保持到其收到一个由主器件发送的含有其地址的ARA为止。SMBus只工作在从10kHz到最高100kHz。最低工作频率10kHz是由SMBus超时功能决定的。
总结
SPI有较快的速度,但是只能单主多从,管理线比较复杂。
I2C等速度比较慢,数据比较臃余,但是主从管理好,也省电省控制管脚。
相关问答
怎么测试 i2c传感器 数值?看到两个竖着的游标,标有红色a,b字样,线是蓝色的,调两线位移,两线之间就可以测所有与时间相关的参数;另外水平还有两条蓝色游标线(虚的),上面线上有个方...
什么是 i2c , i2c 有什么作用?I2C是一种总线,简单的说可以进行数据传输,有很多传感器或者芯片都有I2C接口用于数据传输,比如AM2311温湿度传感器就是I2C总线接口的,利用纬图的GinkgoUSB-I2...
单片机、光耦[回答]1系统总体结构原理粮食在储藏期间,由于受环境、气候和通风条件等因素的变化,粮仓内温度或湿度会发生异常,这极易造成粮食的霉烂、或发生虫害。那么...
市面上四种主流 温度传感器 的优缺点有哪些?[回答]本篇介绍市面上常用的四种类型的温度传感器(电阻式温度检测器(RTD)、热电偶、热敏电阻器以及具有数字和模拟接口的集成电路(IC)传感器)的优点与...
(Spartan-II)通过SCCB(类似 I2C )总线对CMOS图像 传感器 各寄...[最佳回答]简单来说就是用fpga来实现CMOS图像传感器的接口电路设计,然后用c语言完成用户端软件的设计.楼主需要具备的知识:fpga相关知识,verilogHDL硬件描述...
spi总线和 i2c 总线的区别?SPI总线和I2C总线在数据传输规则、传输速率、线路数量以及使用场景等方面有一定的区别。首先,SPI总线使用四根线(CLK,MOSI,MISO,CS)进行传输,支持全双工模...
mcu和cpu的区别?1、CPU:功能主要是解释计算机指令以及处理计算机软件中的数据。CPU是计算机中负责读取指令,对指令译码并执行指令的核心部件。2、MCU:MCU同温度传感器之间通...
童鞋们有谁能给我推荐一下!!张家口型号全 传感器 公司, 传感器 ...[回答]温度传感器对于环境温度的测量非常准确,广泛应用于农业、工业、车间、库房等场所。对于温度传感器的种类非常多,不同的感温元件不同的型号,可以从厂...
传感器 的接线类型和方式有哪些?传感器的接线类型和方式因传感器类型和应用不同而有所不同。下面列出一些常见的传感器接线类型和方式:1.模拟信号输出型传感器:这种传感器的电路输出的是模...
串口通信协议有哪些?串口通信协议有许多种,而其中最常见的包括RS-232、RS-422、RS-485、Modbus、SPI、I2C、CAN等。每种协议都有其特定的通信标准和规范,用于在串口通信中进行数据...