上海羊羽卓进出口贸易有限公司

热电偶传感器原理 关于热电偶,这一篇文章就够了!详细介绍原理,特征及判断方法!

发布时间:2024-10-07 08:10:11

关于热电偶,这一篇文章就够了!详细介绍原理,特征及判断方法!

第一章 热电偶的基础知识

1、什么是热电偶

所谓热电偶是指由两种不同材质的金属导体构成的温度传感器。与其他温度计(水银温度计、热敏电阻等)相比较,主要用于工业行业的热电偶具有其特点:

①响应速度快。

②可进行-200℃到+1700℃之间大范围的温度测量。

③可对特定点和小空间进行温度测量。

④由于温度信息可检测为电信号(热电动势),信息的处理和分析非常便利。

⑤价格低廉,易购买。

2、热电偶的原理

1821年德国科学家塞贝克(T.J Seebeck)发现:当连接两种不同金属,并对两端的接点施加不同温度时,金属之间会产生电压并有电流通过。这一现象以发现者的名字命名为“塞贝克效应”。该回路中生成电流的电力被称为热电动势(Thermoelectromotive force),其极性和大小仅由两种导体的材质和两端之间的温度差决定。

利用前面所说的塞贝克效应,热电偶工作原理为其凭借2种不同金属的接合处(测温接点)T1与热电偶显示仪表接点(基准接点)T0之间的温度差T,从而产生电压。使用热电偶测量温度时,显示仪表会测量该电压。

热电偶显示仪表的测量方式有以下2种。

1、将基准接点设为 0℃(冷端补偿),直接读取温度。

2、测量基准接点的气温(基准接点补偿),计入温度差△T。

测量时,将冷端维持在0℃非常困难。通过测量端子周围的温度,将其与以0℃为基准的热电动势相加,可以获得测温接点的温度。我们称之为基准接点补偿。

3、热电偶的感温部分位于何处?

下图是将热电偶插入装有热液体的杯中的示意图。假设液体内温度为均匀100℃(无温度梯度)。此时,液体内的热电偶部分不会产生热电动势。热电动势只产生于存在温度梯度的部分。由于热电偶的感温部位会产生热电动势,因此该温度梯度部位即为热电偶的感温部位。

第二章 热电偶的选择

1、根据测量温度选择

热电偶按照两种金属导体的组合方式可分为以下8大种类。

B型热电偶、R型热电偶、S型热电偶被称为贵金属热电偶,而N型热电偶、K型热电偶、E型热电偶、J型热电偶、T型热电偶被称为廉金属热电偶。含有铂、铑等熔点较高金属的贵金属热电偶被用来测量+1000℃以上的温度,而廉金属热电偶则常用于测量+1000℃以下的温度。

下面描述了各类热电偶的特征。

【B型热电偶】

B型热电偶由于相较其他贵金属热电偶,其铑含量更高,所以熔点和机械强度有所增加,使用寿命长。电动势极低,无法测量低温区域。主要用于测量R型热电偶/S型热电偶无法测量的温度更高的区域。

【R型热电偶和S型热电偶】

R型热电偶和S型热电偶也用于对耐久性有一定要求的高温区域。在我国贵金属热电偶中S热电偶的使用率最高。

【N型热电偶】

N型热电偶价格低廉,用于测量+1000℃以上的高温区域。

【K型热电偶】

相较于贵金属热电偶,K型热电偶价格低廉,现在工业用途中最常见到它的身影。由于其电动势的直线性良好,具有较高的耐热和耐腐蚀性,因此可优先考虑使用K热电偶。

【E型热电偶】

每1℃的电动势极大,是分辨率良好的类型。特别用于对温度进行精准测量。

【J型热电偶】

J型热电偶是次于 E 热电偶的类型,其每1℃的电动势较大,分辨率优良。价格低于E热电偶也是其一大特点。

【T型热电偶】

T型热电偶是低温区域(-200到+300℃)下的电动势特性优秀的类型。用于精准测量低温区域。

2、根据环境性和响应性选择

为了使热电偶引线在氧化和腐蚀环境下具有耐久性,通常将其与外界空气隔绝。为了与外界空气隔绝,会在金属套管和一对热电偶引线之间充填和封入粉末状的无机绝缘物质,我们将这种加工而成的热电偶称为“铠装热电偶”。

以下为铠装热电偶的特点。

凭借这些特点,自十多年前投入到实际应用中以来,铠装热电偶的使用变得越来越广泛。

①较大的机械强度使其具有优良的弯曲性和耐冲击性

②良好的耐腐蚀性和抗压性

铠装热电偶的测温接点有3种类型。根据使用用途选择最合适的接点类型。

【接地式】

接地式热电偶将热电偶引线直接焊接在套管前端,构成测温接点。其特点是响应快。由于引线与套管导通,不能使用于存在噪音或危险的场所。

【绝缘式】

绝缘式热电偶的热电偶引线与套管完全绝缘,构成测温接点。其响应性不及接地型,但可长时间使用,此外也可用于存在噪音或危险的场所而不受任何影响。

【露端式】

这种热电偶的热电偶引线从套管中露出,构成测温接点。其响应性为3种类型中最快,可对细微的温度变化作出反应。它可用于诸如引擎测试等对快速响应性有一定要求的场合。但是强度很低,基本上只作为一次性使用。

第三章 热电偶与补偿导线

1、什么是补偿导线

所谓补偿导线是指用于连接热电偶与温度显示仪表之间的导线。在使用温度范围(0℃到+60℃)内具有与热电偶几乎相同的热电动势,因此它主要用于延长热电偶。

出于对下图所示的温度梯度考虑。

由于感温部位存在温度梯度,补偿导线上也会产生与该温度差相当的热电动势。热电偶显示仪表计算产生的热电动势的合计值,并显示为温度。

2、温度仪表通过测量热电偶电势值而显示温度

如果按上图所示不使用补偿导线而使用铜导线,那么即使存在温度梯度的部分也不会产生热电动势。由此导致温度的测量结果产生误差。

3、热电偶与补偿导线的连接

连接部位不存在温度梯度时,使用普通接线板连接热电偶与补偿导线不会有任何问题。

假使连接部位产生温度差异,则无法进行正确测量。此时,应使用与所用热电偶具有相同热电动势的专用连接器。

4、热电偶的最大延长

热电偶本身延长至1km以上也可以使用。但是,测量器上一般都规定了可配线的最大输入信号电阻值和“输入信号电阻”。需要注意的是,如果热电偶的总电阻值超出该值,则无法实现正确测量。

第四章 热电偶校验

按照国家颁布的热电偶检定和校验技术规范,热电偶校验一般用定点法或比较法进行校验,下面对比较法和定点法做相关介绍。

1、定点法和比较法

所谓热电偶校验,是指决定所用热电偶显示的值与实际温度之间关系的一项操作。校验通常每半年进行1次。校验方法大致可分为定点法和比较法。

【定点法】

所谓定点法,是指使用温度定点给出正确温度值,然后进行校验的方法。

如上图所示测量定点温度后进行校验。

由于温度定点为物质的相平衡状态,无论何时复现温度均恒定不变。

所谓水的三相点,是指液体、气体、固体这三种形态共存的温度,通常可以在被称为水三相点瓶的玻璃瓶中实现。±0.001℃可获得最佳精度,常在定点法中使用。

【比较法】

所谓比较法,是指利用二等标准热电偶WRPB-2测量任意规定的恒温槽温度,同时获得它与已测被校验热电偶之间的误差后进行校验的一种方法。

相较于定点法,其精度下降,可使用任意温度进行校验是其特点所在。

2、热电偶的使用寿命

热电偶也具有使用寿命。虽然其使用温度和环境千差万别,但一般来说,如果在低于常用温度以下的氧化环境中使用,贵金属热电偶使用寿命约为2000小时,廉金属热电偶的使用寿命约为10000小时。如果在极限温度下使用,则它的使用寿命会大幅缩短,约为50到250小时。当热电偶接近使用寿命时,它将无法显示正常温度,最终会断线。为了进行正确测量,请定期对热电偶进行维护和更换。

第五章 热电偶测量故障排查

使用热电偶测量温度时,有时会无法获得正确的测量值。下面汇总了热电偶测量时容易发生的故障实例。

上图是进行正常热电偶测量的状态

按照总体的热电动势为1.00mV+3.00mV+10.00mV=14.00mV,测量值为100℃。(以热电动势的各数值作为参考值)

1、热电偶与补偿导线的极性反接

如果弄错热电偶与补偿导线的极性,则无法正确测量。

总体的热电动势变为-6.00mV,显示仪表上显示错误温度。

2、铜导线代替补偿导线使用等

有温度梯度时,如果使用铜导线等替代补偿导线,则无法正确测量。

总体的热电动势变为11.00mV,测量器上显示错误温度。

3、使用了不同种类的热电偶和补偿导线

如果使用与测量器不同种类的热电偶与补偿导线,则无法正确测量。

总体的热电动势变为7.50mV,测量器上显示错误温度。

热电偶温度传感器的工作原理及测量

热电偶测温的基本原理是两种不同成份的材质导体组成闭合回路,当两端存在温度梯度时,回路中就会有电流通过,此时两端之间就存在电动势——热电动势,这就是所谓的塞贝克效应。两种不同成份的均质导体为热电极,温度较高的一端为工作端,温度较低的一端为自由 端,自由端通常处于某个恒定的温度下。根据热电动势与温度的函数关系, 制成热电偶分度表; 分度表是自由端温度在0℃时的条件下得到的,不同的热电偶具有不同的分度表。

  在热电偶回路中接入第三种金属材料时,只要该材料两个接点的温度相同,热电偶所产生的热电势将保持不变,即不受第三种金属接入回路中的影响。因此,在热电偶测温时,可接入测量仪表,测得热电动势后,即可知道被测介质的温度。

热电偶温度传感器的工作原理

  两种不同成份的导体(称为热电偶丝材或热电极)两端接合成回路,当接合点的温度不同时,在回路中就会产生电动势,这种现象称为热电效应,而这种电动势称为热电势。热电偶就是利用这种原理进行温度测量的,其中,直接用作测量介质温度的一端叫做工作端(也称为测量端),另一端叫做冷端(也称为补偿 端);冷端与显示仪表或配套仪表连接,显示仪表会指出热电偶所产生的热电势。

  热电偶实际上是一种能量转换器,它将热能转换为电能,用所产生的热电势测量温度,对于热电偶的热电势,应注意如下几个问题:

  1:热电偶的热电势是热电偶工作端的两端温度函数的差,而不是热电偶冷端与工作端,两端温度差的函数;

  2 :热电偶所产生的热电势的大小,当热电偶的材料是均匀时,与热电偶的长度和直径无关,只与热电偶材料的成份和两端的温差有关;

  3:当热电偶的两个热电偶丝材料成份确定后,热电偶热电势的大小,只与热电偶的温度差有关;若热电偶冷端的温度保持一定,这进热电偶的热电势仅 是工作端温度的单值函数。将两种不同材料的导体或半导体A和B焊接起来,构成一个闭合回路,如图所示。当导体A和B的两个执着点1和2之间存在温差时,两 者之间便产生电动势,因而在回路中形成一个大小的电流,这种现象称为热电效应。热电偶就是利用这一效应来工作的。 

  温度是对物体样本中粒子平均动能的测量方式,其标准单位是“度”。温度可以通过不同方法进行测量,测量的成本和精确度也因此各不相同。热电偶就是其中一种常见的测量温度的传感器,因为热电偶相对而言价格便宜而且精确度高,并且其测量范围相对较宽。  每当两个不同的金属接触,接触点聚会产生一个以温度为函数的较低的空载电压,这就是热电效应。这个温差电压就是Seebeck电压,以1821年发现该现象的物理学家ThomasSeebeck命名。该电压相对于温度是非线性的,但是对于小范围内的变化温度可以近似的认为是线性的,或者:

(1)  式中,?V是电压变化,S是Seebeck系数,而?T是温度变化。  热电偶的类型有很多种,并且都根据美国国家标准学会(ANSI)公约规定,由大些字母注明其成分。例如,J型热电偶由一个铁制导体和一个铜镍合金导体构成。热电偶的其他类型包括B,E,K,N,R,S,和T。如何测量热电偶   为了更好地理解如何进行热电偶测量,必须先了解热电偶工作原理。本文档的第一部分将解释热电偶的基本原理,以后部分将陆续讲解如何实现热电偶同仪器之间的连接以及如何进行温度测量。  热电偶Seebeck电压如果直接连到测量系统上连接到测量系统上会产生附加温差电路,因此不能通过简单地同电压表或者其他测量系统连接而进行测量。

图1.J型热电偶

  如图1所示,电路中使用J型热电偶对烛火温度进行测量。两个热电偶线路同数据采集设备的铜质接线端子连接。注意该电路中有三个金属连接口——J1,J2和J3。J1是热电偶测量点,产生一个同烛火温度成比例的Seebeck电压。除此之外J2和J3每个都有各自的Seebeck系数,并在数据采集终端都会产生一个同温度成比例的温差电压,称为冷端电压。为了确定J1的电压分量,就需要知道J2和J3接点的温度,并且知道接点电压和温度之间的关系。这样,就可以通过从测量电压中减去J2和J3寄生结电压分量而得到J1接点的电压。  热电偶需要一个特定的温度基准来补偿该冷端产生的误差。最常用规定方法就是使用可直接读取的温度传感器测量得到参考端温度,减去寄生端电压分量。这个处理方法被称为冷端补偿,可以利用某些热电偶的特性来简化计算冷端补偿。  通过使用金属过渡层的热电偶定律以及其他假设条件,我们可知电压数据采集系统的测量只取决于热电偶类型,测量端电压和冷端温度。测量电压同测量导线和冷端J2、J3的电压分量无关。

图2.金属过渡层热电偶定律

  考虑图3中电路。该电路同前文图1中所描述的电路相似,但是在J3接点前插入了一小段铜镍合金导线。所有接点处于同样的温度条件下。假定J3和J4接点温度相同,金属过渡层热电偶定律说明图3中的电路同图1中的电路在电气理论上是相同的。所以,图3电路所测得的任何结果都适用于图1所示电路。

图3.在等温环境中插入一个附加导线

  图3中,J2和J4接点属于同一类型(铜镍合金);因为两者处于等温环境,J2和J4也是同样的温度。因为电路中电流方向缘故,J4端产生一个Seebeck正电压,J2端产生一个Seebeck负电压。因此,接点抵消了相互之间的影响,测量电压的总量就为零。J1和J3接点都是铁—铜镍合金接点。但是他们的温度可能不同,因为他们可能不是在等温环境中。因为他们处于不同温度环境下,J1和J3接点都可以产生Seebeck电压,但是大小不同。为了补偿冷端J3,测量其温度并将其作用电压从热电偶测量中减去。  使用VJx(Ty)符号表示Jx接点在Ty温度时所产生的电压,一般热电偶问题简化成下式:VMEAS=VJ1(TTC)+VJ3(Tref)(2)  式中,VMEAS表示数据采集系统测量得到的电压值,TTC表示J1接点热电偶的温度,Tref表示基准端的温度。  注意到在(2)式中,VJx(Ty)表示的是就某个基准温度而言在Ty温度环境下所产生的电压。只要VJ1和VJ3是与同一个基准温度相关的温度函数,2式就成立。例如,如前文所述的NIST热电偶参照表就是将基准端保持在0摄氏度情况下生成的。  因为J3和J1是同类型的,但是产生相对电压,所以VJ3(Tref)=-VJ1(Tref)。又因为VJ1是热电偶类型测试状态下产生的电压,所以该电压可以重命名为VTC。因此,2式可以改写成下式:VMEAS=VTC(TTC)-VTC(Tref)(3)  因此,通过测量VMEAS和Tref知道了热电偶电压同温度的关系,就能够确定热电偶测量端的温度。  现有两种实现冷端补偿的技术——硬件补偿和软件补偿。两种技术都需要使用可直接读取传感器得到基准端温度。可直接读取传感器有一个只由测量点温度决定的输入端。半导体传感器,电热调节器和RTD都是常用的测量基准端温度的仪器。  使用硬件补偿,可以将一个可变电压源插入到电路中,撤销寄生温差电压。可变电压源根据环境温度产生一个补偿电压,这样附加到修正电压上用来撤销不需要的温差信号。当这些寄生信号都被去除了,数据采集系统测量的唯一信号就是从热电偶测量端测得的电压。使用硬件补偿的情况下,数据采集系统终端的温度是不相关的,因为其中的寄生性热电偶电压已经被取消了。硬件补偿的主要不足之处在于,每种热电偶必须拥有一个分开的能够附加修正补偿电压的补偿电路,这样就会大大增加电路的成本。通常情况下,硬件补偿在精度上也不及软件补偿。  或者您可以选择使用软件来进行冷端补偿。在使用可直接读取传感器测量得到基准端温度后,软件能够在被测电压上附加一个适合的电压值来消除冷端电压的影响。回忆(3)式中指明被测电压VMEAS等于(热电偶)测量端接点和冷端接点之间的电压差值。  热电偶输出电压是高度非线性的。Seebeck系数会因为一些热电偶的运行温度区域中三个或以上的因素而有所变化。因此,您必须使用多项式来模拟热电偶中电压VS温度曲线或者使用查表法。

测量精度和温度测量范围的选择   使用温度在1300~1800℃,要求精度又比较高时,一般选用B型热电偶;要求精度不高,气氛又允许可用钨铼热电偶,高于1800℃一般选用钨铼热电偶;使用温度在1000~1300℃要求精度又比较高可用S型热电偶和N型热电偶;在1000℃以下一般用K型热电偶和N型热电偶,低于400℃一般用E型热电偶;250℃下以及负温测量一般用T型电偶,在低温时T型热电偶稳定而且精度高。使用气氛的选择   S型、B型、K型热电偶适合于强的氧化和弱的还原气氛中使用,J型和T型热电偶适合于弱氧化和还原气氛,若使用气密性比较好的保护管,对气氛的要求就不太严格。湿度传感器探头,,不锈钢电热管PT100传感器,,铸铝加热器,加热圈流体电磁阀耐久性及热响应性的选择   线径大的热电偶耐久性好,但响应较慢一些,对于热容量大的热电偶,响应就慢,测量梯度大的温度时,在温度控制的情况下,控温就差。要求响应时间快又要求有一定的耐久性,选择铠装偶比较合适。测量对象的性质和状态对热电偶的选择   运动物体、振动物体、高压容器的测温要求机械强度高,有化学污染的气氛要求有保护管,有电气干扰的情况下要求绝缘比较高。注意事项   热电偶公称压力:一般是指在工作温度下保护管所能承受的静态外压而破裂。  热电偶最小插入深度:应不小于其保护套管外径的8-10倍(特列产品例外)  绝缘电阻:当周围空气温度为15-35℃,相对湿度<80%时绝缘电阻≥5兆欧(电压100V)。具有防溅式接线盒的热电偶,当相对温度为93± 3℃ 时,绝缘电阻≥0.5兆欧(电压100V)     高温下的绝缘电阻:热电偶在高温下,其热电极(包括双支式)与保护管以及双支热电极之间的绝缘电阻(按每米计)应大于下表规定的值。

相关问答

热电偶传感器 工作 原理 ?

工作原理两种不同成份的导体(称为热电偶丝材或热电极)两端接合成回路,当两个接合点的温度不同时,在回路中就会产生电动势,这种现象称为热电效应,而这种电...

温度 传感器 的工作 原理 ?_作业帮

[最佳回答]温度传感器的工作原理:1、热电阻:根据金属丝的电阻随温度变化的原理工作的2、热电偶:两种导体接触在一块,结点处会有一个稳定的电动势;同一导体,两...

【温度 传感器 的工作 原理 ?】作业帮

[最佳回答]温度传感器的原理大致有如下几类一.热膨胀1.金属热膨胀传感器金属在环境温度变化后会产生一个相应的延伸,因此传感器可以以不同方式对这种反应进行...

热电偶 工作 原理 - 天气加

[回答]热电偶的工作原理是两种不同成份的材质导体组成闭合回路,当两端存在温度梯度时,回路中就会有电流通过,此时两端之间就存在电动势——热电动势,这就...

热电偶 测量温度的 原理 是什么?_作业帮

[最佳回答]热电偶的测温原理是热电效应,将A、B两种不同的导体,组成闭合回路,若两连接点温度(T、T0)不同,则在回路中就产生热电势,形成热电流,叫热电效应.热电...

热电偶 温度计的工作 原理 的是什么?

热电偶测温的基本原理是热电效应。把任意两种性质不同的导体或半导体连接成闭合回路,如果两接点的温度不同,在回路中就会产生热电动势,形成热电流,这就是热电...

热电偶 温度控制器 原理 ?

热电偶通过两根不同金属丝遇热后产生的毫伏电压输送到温度控制仪取样放大对比后推动显示屏。热电偶通过两根不同金属丝遇热后产生的毫伏电压输送到温度控制仪...

冷却液温度 传感器 工作 原理 是什么?

[最佳回答]发动机ECU接受冷却液温度传感器信号作为发动机喷油和点火的修正信号,同时也用于控制冷却液风扇、空调等,其作用不容小觑。若ECU接受失真的冷却液温...

热水 传感器 温度探头工作 原理 ?

燃气热水器中会放一根温度传感器,类型通常为K型热电偶。工作原理为:水温变化时,热电偶会将温度变化转换成mV线电压变化,传递给温控表,温控表就会显示当时水...

热电偶 的标定和测温简述测温 原理 ?

在温度测量中,热电偶的应用极为广泛,它具有结构简单、制造方便、测量范围广、精度高、惯性小和输出信号便于远传等许多优点。热电偶测温原理是将两种不同成分的...

展开全部内容