温度传感器的文献 传感器及其工作原理
传感器及其工作原理
一、认识传感器
1.传感器
(1)定义:传感器是指这样一类元件:它能够感受诸如力、温度、光、声、化学成分等物理量,并能把它们按照一定的规律转换为便于传送和处理的另一个物理量(通常是电压、电流等电学量),或转换为电路的通断.
☞生活中的实例
(2)基本特性:把非电学量转换为电学量,可以方便地进行测量、传输、处理和控制等.
2.传感器的工作原理:传感器通过敏感元件感受的通常是非电学量,而它利用转换元件输出的通常是电学量,如电压、电流、电荷量等.
传感器一般由敏感元件、转换元件、转换电路和辅助电源四部分组成,其工作原理如图所示.
敏感元件直接感受被测量,并输出与被测量有确定关系的物理量信号;转换元件将敏感元件输出的物理量信号转换为电信号;转换电路负责对转换元件输出的电信号进行放大调制;转换元件和转换电路一般还需要辅助电源供电.
☞敏感原件干簧管的结构及原理
如图所示,它由用玻璃管封入两个软磁性材料制成的簧片组成.当磁铁靠近干簧管时,两个簧片被磁化而接通,所以干簧管能起到开关的作用,操纵开关的是磁场这只看不见的“手”.干簧管是一种能够感知磁场的传感器,广泛用于电工设备和电子设备中.
3.传感器的特点
微型化、数字化、智能化、多功能化、系统化、网络化它是实现自动检测和自动控制的首要环节.传感器的存在和发展,让物体有了“触觉”“味觉”和“嗅觉”等,让物体慢慢“活”了起来.
4.传感器的分类
(1)按照其用途可分为:压力传感器、位置传感器、液面传感器、能耗传感器、速度传感器、加速度传感器、射线辐射传感器、热敏传感器、雷达传感器等.
(2)按照其原理可分为:振动传感器、湿敏传感器、磁敏传感器、气敏传感器、真空度传感器、生物传感器等.
(3)按其输出信号可分为:模拟传感器——将被测量的非电学量转换成模拟电信号;
数字传感器——将被测量的非电学量转换成数字输出信号(包括直接和间接转换);
膺数字传感器——将被测量的信号量转换成频率信号或短周期信号(包括直接和间接转换);
开关传感器—当一个被测量的信号达到某个特定的阈值时,传感器相应地输出一个设定的低电平或高电平信号.
(4)按照其测量目的可分为:物理型传感器、化学型传感器、生物型传感器.
☞几种传感器中的敏感元件
二、对敏感元件的认识
1、光敏电阻:是一种电阻值随入射光的强弱而改变的电阻器.
(1)特性:当用不同的光照射光敏电阻时会得到不同的电阻,由实验数据可知一般光照强度越强,电阻越小.
(2)本质:一般构成光敏电阻的物质为半导体材料,当无光照时载流子极少,导电性能不好;随着光照的增强,载流子增多,导电性能变强,电阻就会减小.
(3)作用:把光照强弱这个光学量转换为电阻这个电学量,就如同人的眼睛一样,可以感知光线的强弱,应用光敏电阻可制成光电计数器.
☞街旁路灯和江海里的航标都要求在夜晚亮、白天熄,利用半导体的电学特性制成了自动点亮、熄灭的装置,实现了自动控制,这是利用半导体的光敏性.
2.热敏电阻和金属热电阻
(1)热敏电阻
①由半导体材料制成,利用温度变化使半导体的导电性能发生变化的电子元件一般热敏电阻的阻值随温度的升高而减小.
②分类:热敏电阻是敏感元件的一类,按照温度系数不同分为正温度系数热敏电阻(PTC)、负温度系数热敏电阻(NTC)和临界温度热敏电阻(CTR).正温度系数热敏电阻随温度升高电阻增大;负温度系数热敏电阻随温度升高电阻减小(这是最常见到的热敏电阻,如边栏图R-T图象中的热敏电阻);临界温度热敏电阻具有负电阻突变特性,在某一温度下,电阻值随温度的增加急剧减小,具有很大的负温度系数.它们的电阻率随温度的变化如边栏图中ρ-t图象所示.
☞金属热电阻与热敏电阻的R-T特性曲线
☞各种热敏电阻的电阻率随温度的变化情况
(2)金属热电阻:金属的电阻率随温度的升高而增大,利用这一特性,金属丝也可以制作成热敏传感器,称为热电阻一般的金属热电阻的灵敏度较差.
(3)氧化锰热敏电阻和金属热电阻的对比
三、霍尔元件
1、霍尔元件:如图所示,在一个很小的矩形半导体(例如砷化铟)薄片上、制作四个电极E、F、M、N,它就成了一个霍尔元件.
2、霍尔电压
(1)表达式:如图所示,E、F间通入恒定电流I,同时外加与薄片垂直的磁感应强度为B的磁场,则MN间出现霍尔电压UH,UH=kIB/d.
(2)原理:以载流子是自由电子为例,霍尔电压的推导如下:根据左手定则,让磁感线垂直穿过手心,四指指向电子运动的反方向(即电流方向),
拇指指向即电子受洛伦兹力的方向,电子在洛伦兹力作用下发生偏转,并在左右两侧表面积累,则左侧表面积累负电荷,右侧表面就积累等量的正电荷,即右侧表面的电势高,这样就会形成电场,当电子所受电场力与洛伦兹力平衡时,左、右两侧的电压达到稳定.
☞霍尔元件的分类
霍尔元件可分为两类:一类是金属霍尔元件,其载流子是自由电子;另一类是半导体霍尔元件,其载流子是空穴(可以认为是带正电的粒子).
设M、N左右两板距离为h,E、F上下两板距离为d,则eE场=eU/h=evB,又知导体中电流I=nevS=nev·hd,联立方程得U=IB/ned.由于ne是由霍尔元件本身材料决定的,我们把kIB/d称为霍尔系数,用k表示,这样就有UH=kIB/d,其中d是薄片的厚度.
3、霍尔电势高低的判断
由左手定则判断带电粒子的受力方向,从而得出带电粒子的偏转方向,正电荷聚集的面为高电势面,负电荷聚集的面为低电势面.
☞霍尔电势判断要点
在判断霍尔电势的高低时,一定要注意载流子是正电荷还是负电荷.无论载流子是正电荷还是负电荷,四指指的都是电流方向,即正电荷定向移动的方向,负电荷定向移动的反方向(电流方向一定时,无论载流子是正电荷还是负电荷,载流子受力方向均相同).
4.霍尔元件的作用
一个霍尔元件的厚度d、霍尔系数k为定值,若保持电流I恒定,则霍尔电压U就与磁感应强度B成正比,因此,霍尔元件能够把磁感应强度这个磁学量转换为电压这个电学量,故霍尔元件又称磁敏元件.
☞霍尔传感器技术在汽车工业中有着广泛的应用,包括动力、车身控制、牵引力控制以及防抱死制动系统。为了满足不同系统的需要,霍尔传感器有开关式、模拟式和数字式三种形式.
学术分享丨智能穿戴设备在新冠疫情中的潜在应用与展望
随着学会的队伍不断发展壮大,分支机构的发展愈发完善,丰富多彩的分支活动与学术分享也频频呈现。疫情期间,CAAI认知系统与信息处理专委会积极倡导学会“疫情防控不放松,学习充电不间断”的理念,邀请年轻学者结合本专委会自身领域研究精选相关文献进行研究与再解读,与大家分享《智能穿戴设备在新冠疫情中的潜在应用与展望》。
作者:袁实、方斌
1、背景2019年冠状病毒疾病(COVID-19)已成为一种大流行病,感染病毒后临床表现症状严重。像COVID-19这样的大规模流行病对世界卫生系统提出了前所未有的要求,极大地冲击了医疗系统,并以前所未有的方式严重威胁着全球。虽然前线人员在检测病毒、提供治疗和开发疫苗方面作出了巨大努力,但也必须审查处理疾病出现、阻止其传播、特别是预防疾病战略的技术和系统。可穿戴设备可以将基本生命体征与临床症状学结合起来,在COVID-19感染的早期预警中发挥至关重要的作用,以进行测试有可能感染的人,检测被隔离、隔离或突然恶化的人,特别是无症状的人,并远程监测与COVID-19相关的非患者,以便优先使用和分配资源,减少交叉污染。
在COVID-19的所有临床表现中,有三种原发性冠状病毒症状:一)呼吸窘迫,呼吸急促,二)发烧,三)咳嗽。其临床特征是:I)呼吸频率(RR)≥每分钟20次呼吸(Bpm),II)温度≥38°C,III)脉冲速率>每分钟100次,用听诊器获得数据。因此,进行呼吸评估、心血管监测和其他参数或指标评估,如温度和咳嗽筛查可以检测任何可疑病例或恶化。近期IEEE Reviewin Biomedical Engineering发表了“Wearable sensing andtelehealth technology with potential applications in the Coronavirus pandemic”文章,主要阐述了以上三个方面:1)适合于监测高危人群和检疫人群的可穿戴设备,用于评估护理人员和管理人员的健康状况,并促进进入医院的分类过程;2)用于检测疾病和监测临床情况,传感系统可以检测相对较轻症状的患者突然恶化时的情况;3)远程保健技术,用于远程监测和诊断 COVID-19和相关疾病。
图1 可穿戴设备在不引人注目的传感器和远程保健系统在流行病期间的应用场景(上面的一些原始设计概念是从R.Pettigrew博士2012年在国家科学院举行的IEEE生命科学大挑战会议上的演示中借用的)[1]
2、检测呼吸的可穿戴设备
COVID-19主要被认为是一种呼吸系统疾病。肺部可能发炎,导致呼吸困难;此外,它还会导致肺炎,肺内肺泡的感染,血液交换氧气和二氧化碳[2]。可穿戴设备能够提供无创和持续的评估和监测患者的呼吸功能或参数,包括SpO2、RR和肺音。
2.1 氧气饱和
氧饱和度(SpO2)是衡量血红蛋白饱和氧的百分比,是呼吸功能和人体整体生理状况的标志。随着COVID-19病毒的进化,导致肺部可以充满炎症物质和液体,气囊变得发炎,阻碍了它们通过氧气进入血液的能力,可能导致缺氧和即将到来的器官损伤。正常健康的人能够达到95%-100%的SpO2水平,但有健康问题或呼吸窘迫的患者的水平可能会降低。SpO2是COVID-19患者分类的重要指标。世卫组织的指导方针建议,SpO2大于94%的患者可以在家庭得到护理。
图2 商业可用可穿戴脉冲氧计
虽然商业上可用的脉冲血氧测定的使用是广泛的,但这种可穿戴技术仍然存在,诸如运动伪影和高功率消耗等常见问题,这是长期远程健康应用的关键挑战。近几十年来,一直在努力解决这些挑战。为了减轻运动伪影的影响,Yan和Zhang开发了一种使用最小相关离散饱和变换来估计SPO2的算法,当信号质量较低时,该算法比临床验证的运动抗算法离散饱和变换具有更好的性能[3]。Mendelson等人,研究了一种多通道反射脉冲血氧计,它被证明是有效的鲁棒噪声消除与PPG信号同时从每个信道获得[4]。Chacon等人研究了一种无线可穿戴脉冲氧计,它与一种新的数据相关的运动伪影裁剪算法集成在一起,被证明是一种有效的连续监测SpO2的方法[5]。哈维等人最近的另一项研究开发了一种基于PPG时频分量的算法,该算法被证明具有运动伪影和低氧水平的SpO2测量精度为96.76%[6],此外还研究了提高脉冲氧法能量效率的潜在解决方案。Haahr等人的研究提出了一种采用环形背面硅光电二极管的贴片SpO2监视器,可以降低血氧计传感器的功耗[7]。而Kim等人,研究了柔性可穿戴无电池脉冲氧测定法,该法采用具有近场通信技术的新型材料进行电源[8]。最近,Lee等人设计了一种具有柔性有机LED和有机光电二极管的反射贴片式血氧计,与典型的LED和探测器相比,具有超低功耗[9]。随着运动伪影和节能问题的充分解决,具有极低功耗的鲁棒可穿戴脉冲氧计将在像COVID-19这样的大流行病中具有巨大的应用潜力。
图3 脉冲血氧测定的柔性传感。左栏:柔性有机反射氧计阵列[10];中栏:超柔性有机光子皮肤[11];右栏:可穿戴脉冲氧计的小型化无电池无线系统[8]
2.2 呼吸频率
呼吸频率(RR)是监测疾病进展的重要生命体征。与SpO2、HR和体温一起,RR是评估呼吸疾病严重程度的临床特征之一,例如,严重呼吸窘迫患者的RR大于30呼吸/分钟,可发展为ARDS。此外,RR可能是COVID-19的重要预后因素。一项对武汉市COVID-19成年住院患者的回顾性队列研究表明,63%(54人中的34人)死于该疾病的患者每分钟的RR高于24次呼吸,而16%(22人)137)幸存者[12]。因此,用可穿戴设备和不引人注目的传感系统去实时和连续地测量RR对于监测COVID-19的进展非常重要,能够识别病情恶化,评估对治疗的反应,以及评估是否需要改变临床护理。
通过传感器技术,包括热、湿度、声学、压力、电阻、电感、加速度、肌电图和阻抗。具有这些传感器的可穿戴设备可以安装到胸带中,再连接到胸带[13-16],或者应用于皮肤[17,18],以及其他连接方式。
基于气流的方法依赖于呼出的空气更温暖,湿度更高,CO2比吸入的空气更多。因此,RR可以通过检测来测量 温度、湿度和CO2的变化。气流感应的方法通常需要一个传感器连接到气道。传感器可以是热敏电阻、湿度传感器或CO2检测温度/湿度的传感器吸入和呼出空气之间的2次变化。例如,Liu等人。设计了一种基于热对流效应的柔性表皮呼吸传感器,该传感器具有较高的热灵敏度,通过将传感器安装在上唇上方,可以很好地捕捉各种呼吸模式[18]。Dai等人开发了一种聚电解质湿度传感器,可以集成到面罩中,这是在目前的大流行中广泛使用的[19]。但是,使用面罩进行监测仍然会对用户造成干扰,传感器的位移可能会影响精度。
图4 可穿戴RR监视器产品:(a)Spire医疗健康标签(Spire health,USA)[20],呼吸感应(PMD解决方案,爱尔兰)[21]和MonBabyclip(MonBaby,纽约,美国)[22],(b)Zephy成衣(ZephyrTechnology,奥克兰,新西兰)[23]和最新研究(c)表皮热传感器[18],(d)湿度传感器[19],(e)可穿戴应变计[14],(f)腰部可穿戴摩擦电传感器,(g)带3D加速计的呼吸带[15],(h)绷带式呼吸监护仪[17]
2.3 肺音
传染性疾病和非传染性疾病都会导致肺中空气和液体水平的异常。疾病引起的结构改变导致通过胸腔的声传输频率的改变。不定呼吸声根据其频谱-时间特征和位置被分为几种不同的类型。常见的类型包括多种肺部病理和损伤导致不定的呼吸声和/或改变声音传播途径,具有光谱和区域不同的影响,如果适当量化,可以提供关于创伤或疾病的严重程度和位置的额外信息。对于COVID-19,目前缺乏对呼吸声的临床研究,一项研究通过肺部听诊对证实COVID-19的患者进行了肺音调查,并表明所有患者(n=10)都被发现有异常的呼吸声。这表明肺音可能被用作可疑和无症状患者的简单筛查方法。
3、检测心血管的可穿戴设备
虽然COVID-19最常见的临床表现以呼吸症状为主,但COVID-19可显著影响心脏功能,导致心肌损伤,并可能对心血管系统造成慢性损害。一项队列研究报告说,19.7%的COVID-19患者(n=416)在住院期间有心脏损伤[24];另一项研究发现,27.8%的患者有心肌损伤,导致心功能不全和心律失常[25]。SARS-CoV-2所致心血管损伤的机制尚不清楚,但可能涉及呼吸衰竭和低氧血症引起的心脏应激增加,心脏和血管内衬富含ACE2受体的病毒攻击引起的直接心肌感染[26]全身炎症反应引起的间接损伤。
图5 SARS-CoV-2可能引起的心脏损伤的直接或间接机制。生物标志物(心肌钙蛋白I和脑型钠肽),心律失常,心肌梗死和心力衰竭是心肌损伤[27]的表现
3.1 心电图监测CVD和COVID-19患者
心电图是一种诊断工具,通常用于评估心脏系统的电和肌肉功能,记录心脏的节律和活动。心电图及其衍生HR可为无症状个体CVD筛查、CVD诊断和COVID-19治疗风险评估提供有价值的信息。合并心血管损伤的COVID-19可能通过心电图改变间接反映.. 在COVID-19患者中,心电图异常包括ST段抬高和多灶性室性心动过速。此外,目前经验性使用的药物治疗COVID-19可能有副作用和药物相互作用,例如氯喹和羟氯喹已知会延长QT间期,这可能导致致命的副作用[28]。因此,需要密切监测心电图的COVID-19患者QT延长药物[29]。此外,基于可穿戴的远程心电图监测,而不是医务人员的标准生命体征检查,可以通过减少工作人员与病人的接触来减少交叉感染。
图6 几种商业心电图贴片用于COVID-19的临床试验,(A)MCOT(生物遥测,宾夕法尼亚州,美国),(B)Zio xt (加利福尼亚州,美国),(c)NUVANT(Corventis,加利福尼亚州,美国),(d)SEEQ tm MCT(Med tronic,都柏林,爱尔兰),(e)Savvy(Ljubljana,斯洛文尼亚),(f)CAM tm(Bardy Dx ,华盛顿,美国),(g)Vital Patch(加利福尼亚州,美国)
3.2 持续血压监测
血压是反映心脑血管功能的重要生命体征之一.. 高血压,被称为高血压,是心血管疾病发病率和死亡率的主要危险因素,每年占全世界1000多万个基本上可以预防的死亡[30]。对5700名COVID-19患者的研究表明,高血压是最常见的共病(3026(56.6%)患者),其次是肥胖(1737(41.7%)患者)和糖尿病(1808(33.8%)患者[31]。这些研究表明,血压不健康的的人中,遭受COVID-19严重并发症的风险更高。最近的一项包括44672例确诊病例的研究进一步表明,高血压(6.0%)和CVD(10.5%)的病例死亡率明显高于没有患高血压者(0.9%)[32]。
图7 可穿戴式BP监测平台,在日常物体中实现:(A)BP表[33],(B)BP眼镜[34],(C)柔性BP贴片[35],(D)BP衬衫[36],(E)可穿戴皮肤样BP贴片[37],(F)超声BP贴片[38],(G)BP椅子[39],(H)BP相机[40],(I)BP睡床[41]
4、临床症状监测的可穿戴设备
有研究报道,COVID-19的主要临床表现为发热(90%以上病例),咳嗽(75%左右)和呼吸困难(高达50%)[42]。这三个症状也是主要的临床特征,结合流行病学风险,以筛选可疑的COVID-19患者。除了上述呼吸评估外,还必须监测温度和咳嗽情况,以便在家庭和公共场所等非医疗环境中筛查疑似病人,并监测经证实的病例,以随时间了解病情的发展。检测这些最常见的临床表现的COVID-19可以通过最先进的可穿戴设备。在这一小节中,我们将回顾可穿戴温度监测和咳嗽检测技术的最新进展及其在早期控制COVID-19大流行中的潜在应用。
4.1 温度
Han等人设计了一种像柔性温度传感器一样的皮肤,它使用电阻温度计探测器,结合近场通信技术,实现无电池和无线连续监测表面体温,可能在身体的任何地方[43]。Huang等人研究了一种双热流法,并开发了一种可穿戴式测温仪,该测温仪可以通过佩戴带有内置温度计的头带来测量核心体温,与金标法相比,测量误差小于0.1°C[44]。最近,Atallah等人研究,从泡沫基柔性温度计,可以附加在耳朵后面,以实时测量核心体温。
图8 可磨损温度监测:(a)温度蓝牙贴片[45],(b)基于泡沫的柔性热传感器[46], (c)表皮无线热传感器阵列[47]和(d)头带测温[48]
国内近期由清华大学计算机系、中国智慧城市建设工委、中关村国际软件协会与浙江金开物联网科技有限公司合作,专门针对群体性封闭场所(如学校、工厂、写字楼等)研发了基于测温手环的物联网系统。通过手环精准测温,以(4G/5G)物联网数据采集器为支撑,云端自动记录群体温度信息,自动生成体温报表反馈给主管人员,为长期可靠的安全防疫提供了技术支撑。
图9 手环测温系统
4.2 咳嗽监测
干咳是COVID-19的典型体征和症状之一。感染COVID- 19的人咳嗽时可能会传播这种疾病。由于咳嗽是感冒和流感等其他病毒疾病的常见症状,人们可能不会特别注意这种对身体状况的警告。对于COVID-19,持续监测咳嗽有助于COVID-19的筛查和临床诊断,提高个人对疾病的认识。咳嗽信号通常是通过音频或机械传感器获得的,该传感器可以分别检测咳嗽声或咳嗽引起的振动。这些传感器包括可以可穿戴或放置在用户附近的麦克风,或压电换能器和高灵敏度加速度计,可以放置在喉部或胸部区域[49-51]。利用机器学习分类算法等音频信号处理和识别方法,可以自动识别咳嗽[50]。为了应对COVID-19危机,Imran等人。开发了一种基于混合深度学习和经典机器学习算法的“AI4COVID-19”应用程序,通过使用手机获取的2秒咳嗽记录来检测COVID-19咳嗽。它显示了区分COVID-19咳嗽和非COVID-19相关咳嗽的能力,准确率超过90%[52]。通过智能手机获取音频信号,Monge-Alvarez等人。利用一个具有k近邻分类器的鲁棒特征集进行自动咳嗽检测,并在不同环境中显示出88%和99%的咳嗽检测的灵敏度和特异性[53]。
参考文献(略)
相关问答
【 温度传感器 (柴油机排温,测量范围0-600摄氏度)与温度表(0-6...[最佳回答]你说:“柴油机排温,测量范围0-600摄氏度”是一个被测量区间,你又说:温度表(0-600℃),是个指示表的应用范围,这两者不是一个意思.被测区间范围区间可...
简单剖析几个常见的 温度传感器 型号[最佳回答]接触式温度传感器的型号有:双金属温度计、玻璃液体温度计、压力式温度计、电阻温度计、热敏电阻和温差电偶等。温度传感器采取PT100铂热电阻当感温...
传感器 参数中的F·S是什么单位或具有什么物理意义?_作业帮[最佳回答]F·S是FullScale的缩写,意为“满量程”,就是传感器最大的测量值.F·S的单位因传感器的不同而不同.比如,一只测量范围0~100kPa的压力传感器,它的F·...
温度传感器 断线后还能接收到电流吗?接收不到。你说的断线可能分两种情况,一种是热电偶,热电偶是由两种不同的材料组成的测温传感器,如果两根线断开,也就成了两种单独的材料,电子无法流动自然...
进气 溫度传感器的 工作原理是什麽 - 汽车维修技术网[回答]据汽车维修网小编的了解不少朋友对一些汽车知识不是很了解的,为方便大家了解这些知识,那么今天汽车维修网小编给大家介绍一下关于进气温度传感器的...
温度传感器 又名什么?温度传感器(temperaturetransducer)是指能感受温度并转换成可用输出信号的传感器。温度传感器是温度测量仪表的核心部分,品种繁多。按测量方式可分为接触式和...
温度传感器的 内部结构是什么?温度传感器的结构:测温元件、保护装置,传输装置;有的带固定方式,带接线盒,还有的将带仪表显示的也叫温度传感器。正常看到的是,电机用的温度传感器是个不锈...
温度传感器的 材质有哪些?温度传感器的材质与工作原理:材质:温度传感器热电阻大都由纯金属材料制成,目前应用Z多的是铂和铜,此外,现在已开始采用甸、镍、锰和铑等材料制造温度传感器...
什么是 传感器 ?传感器(英文名称:transducer/sensor)是一种检测装置,能感受到被测量的信息,并能将感受到的信息,按一定规律变换成为电信号或其他所需形式的信息输出,以满...传感...
车上的温度传感器有哪些 车上的 温度传感器的 作用 - 汽车维修...[回答]温度传感器是利用物质各种物理性质随温度变化的规律把温度转换为电量的传感器。温度传感器是温度测量仪表的核心部分,品种繁多。按测量方式可分为接...