击穿传感器 IGBT知识归纳总结(下篇)
IGBT知识归纳总结(下篇)
引起IGBT失效的原因
1、过热容易损坏集电极,电流过大引起的瞬时过热及其主要原因,是因散热不良导致的持续过热均会使IGBT损坏。如果器件持续短路 ,大电流产生的功耗将引起温升,由于芯片的热容量小,其温度迅速上升,若芯片温度超过硅本征温度,器件将失去阻断能力,栅极控制就无法保护,从而导致IGBT失效。实际应用时,一般最高允许的工作温度为125℃左右。
2、超出关断安全工作区引起擎住效应而损坏。擎住效应分静态擎住效应和动态擎住效应。IGBT为PNPN 4层结构,因体内存在一个寄生晶闸管,当集电极电流增大到一定程度时,则能使寄生晶闸管导通,门极失去控制作用,形成自锁现象,这就是所谓的静态擎住效应。IGBT发生擎住效应后,集电极电流增大,产生过高功耗,导致器件失效。动态擎住效应主要是在器件高速关断时电流下降太快,dvCE/dt很大,引起较大位移电流,也能造成寄生晶闸管自锁。
3、瞬态过电流IGBT在运行过程中所承受的大幅值过电流除短路、直通等故障外,还有续流二极管的反向恢复电流、缓冲电容器的放电电流及噪声干扰造成的尖峰电流。这种瞬态过电流虽然持续时间较短,但如果不采取措施,将增加IGBT的负担,也可能会导致IGBT失效 。4、过电压造成集电极、发射极击穿或造成栅极、发射极击穿。
IGBT保护方法
当过流情况出现时,IGBT必须维持在短路安全工作区内。IGBT承受短路的时间与电源电压、栅极驱动电压以及结温有密切关系。为了防止由于短路故障造成IGBT损坏,必须有完善的检测与保护环节。一般的检测方法分为电流传感器和IGBT欠饱和式保护。
1、立即关断驱动信号
在逆变电源的负载过大或输出短路的情况下,通过逆变桥输入直流母线上的电流传感器进行检测。当检测电流值超过设定的阈值时,保护动作封锁所有桥臂的驱动信号。这种保护方法最直接,但吸收电路和箝位电路必须经特别设计,使其适用于短路情况。这种方法的缺点是会造成IGBT关断时承受应力过大,特别是在关断感性超大电流时, 必须注意擎住效应。
2、先减小栅压后关断驱动信号
IGBT的短路电流和栅压有密切关系,栅压越高,短路时电流就越大。在短路或瞬态过流情况下若能在瞬间将vGS分步减少或斜坡减少,这样短路电流便会减小下来,长允许过流时间。当IGBT关断时,di/dt也减小。限制过电流幅值。
igbt模块
IGBT模块是由MOSFET和双极型晶体管复合而成的一种器件。
IGBT模块的选择
IGBT模块的电压规格与所使用装置的输入电源即试电电源电压紧密相关。其相互关系见下表。使用中当IGBT模块集电极电流增大时,所产生的额定损耗亦变大。同时,开关损耗增大,使原件发热加剧,因此,选用IGBT模块时额定电流应大于负载电流。特别是用作高频开关时,由于开关损耗增大,发热加剧,选用时应该降等使用。
IGBT使用注意事项
由于IGBT模块为MOSFET结构,IGBT的栅极通过一层氧化膜与发射极实现电隔离。由于此氧化膜很薄,其击穿电压一般达到20~30V。因此因静电而导致栅极击穿是IGBT失效的常见原因之一。因此使用中要注意以下几点:
1,在使用模块时,尽量不要用手触摸驱动端子部分,当必须要触摸模块端子时,要先将人体或衣服上的静电用大电阻接地进行放电后,再触摸;
2,在用导电材料连接模块驱动端子时,在配线未接好之前请先不要接上模块;
尽量在底板良好接地的情况下操作。
3,在应用中有时虽然保证了栅极驱动电压没有超过栅极最大额定电压,但栅极连线的寄生电感和栅极与集电极间的电容耦合,也会产生使氧化层损坏的振荡电压。为此,通常采用双绞线来传送驱动信号,以减少寄生电感。在栅极连线中串联小电阻也可以抑制振荡电压。
此外,在栅极—发射极间开路时,若在集电极与发射极间加上电压,则随着集电极电位的变化,由于集电极有漏电流流过,栅极电位升高,集电极则有电流流过。这时,如果集电极与发射极间存在高电压,则有可能使IGBT发热及至损坏。
在使用IGBT的场合,当栅极回路不正常或栅极回路损坏时(栅极处于开路状态),若在主回路上加上电压,则IGBT就会损坏,为防止此类故障,应在栅极与发射极之间串接一只10KΩ左右的电阻。
在安装或更换IGBT模块时,应十分重视IGBT模块与散热片的接触面状态和拧紧程度。为了减少接触热阻,最好在散热器与IGBT模块间涂抹导热硅脂。一般散热片底部安装有散热风扇,当散热风扇损坏中散热片散热不良时将导致IGBT模块发热,而发生故障。因此对散热风扇应定期进行检查,一般在散热片上靠近IGBT模块的地方安装有温度感应器,当温度过高时将报警或停止IGBT模块工作。
栅极电阻RG对IGBT开关特性的影响
igbt开关特性
IGBT开关特性的设定可受外部电阻RG的影响。由于IGBT的输入电容在开关期间是变化的,必须被充放电,栅极电阻通过限制导通和关断期间栅极电流 (IG)脉冲的幅值来决定充放电时间(见图1)。由于栅极峰值电流的增加,导通和关断的时间将会缩短且开关损耗也会减少。减小RG(on)和 RG(off)的阻值会增大栅极峰值电流。当减小栅极电阻的阻值时,需要考虑的是当大电流被过快地切换时所产生的电流上升率di/dt。电路中存在杂散电 感在IGBT上产生大的电压尖峰,这一效果可在图2所示的IGBT关断时波形图中观察到。图中的阴影部分显示了关断损耗的相对值。集电极-发射极电压上的 瞬间电压尖峰可能会损坏IGBT,特别是在短路关断操作的情况下,因为di/dt比较大。可通过增加栅极电阻的值来减小Vstray。因此,消除了由于过 电压而带来的IGBT被损毁的风险。快速的导通和关断会分别带来较高的dv/dt和di/dt,因此会产生更多的电磁干扰(EMI),从而可能导致电路故障。
对续流二极管开关特性的影响
续流二极管的开关特性也受栅极电阻的影响,并限制栅极阻抗的最小值。这意味着IGBT的导通开关速度只能提高到一个与所用续流二极管反向恢复特性相兼 容的水平。栅极电阻的减小不仅增大了IGBT的过电压应力,而且由于IGBT模块中diC/dt的增大,也增大了续流二极管的过压极限。通过使用特殊设计 和优化的带软恢复功能的CAL(可控轴向寿命)二极管,使得反向峰值电流减小,从而使桥路中IGBT的导通电流减小。
IGBT与MOS管的区别,可控硅的区别
IGBT在结构上是NPN行MOSFET增加一个P结,即NPNP结构,在原理上是MOS推动的P型BJT。
可控硅也叫晶闸管,分双向和单向,单向可控硅也是单向导通,可以实现整流,但它通过控制导通角可以实现可控整流程 IGBT:绝缘栅场效应晶体管,作用类似三极管,但在这里当开关管用(不能用于放大状态),通过控制G极可以实现C,E两端的通断。一般可用在逆变回路中。
门控管(IGBT)的检测方法
门控管(IGBT)是由场效应管作为推动管。
大功率管作为输出管的有机组合。应用于电磁灶等的大电流、高电平电器中的一种特殊器件。检修中对门控管的检测有如下几种方法:
一、万用表检测法1
1.用指针式万用表R×10k挡。黑表笔接门控管发射极,红表笔接门控管栅极,此时向栅极反向充电。随后红表笔接发射极,黑表笔接集电极。万用表指针应不动(指在机械零位),表明该管未击穿损坏。 2.用指针式万用表黑表笔接栅极,红表笔接发射极,此时向栅极正向充电。随后黑表笔接集电极,红表笔接发射极,万用表指针指示应为零。
3.如符合以上规律,表明该门控管的饱和导通和截止状态均正常。基本未损坏。
二、万用表检测法2
用指针式万用表R×1k挡,数字式万用表选“测二极管档”挡,将门控管集电极、发射极、栅极短接充分放电。万用表黑、红表笔正、反接集电极、栅极和发射极、栅极的电阻,均应为无穷大,否则表明该管已损坏。
将万用表黑、红表笔分别接发射极、集电极,测得阻值均为3.5kΩ左右,是带阻尼二极管的门控管,测得阻值为50kΩ是不带阻尼二极管的门控管。
如门控管三个电极间电阻均很小。表明该管已被击穿损坏。电阻均为无穷大。表明该管道已开路损坏。
电磁炉检修的几个小经验及IGBT注意事项
电磁炉里面的IGBT实在是“娇气”。弄不好几十块钱就没啦!在检修时先去掉加热线圈,。测IGBT的栅级(也就是G点)对地电压。在待机状态下应小于等于0.5V.在开机时应在1~2.5V之间为正常,。前不久修理一个雅乐思电磁炉,G点电压为3,5V,结果加上线圈后,3,4分钟,就爆啦,原因是一个三极管NPN型的击穿,更换后,测G点电压间隔出现1.9V电压,后又接上100W灯泡,也是间隔闪亮,最后通电试机,一切OK
压敏电阻短路从外表就可以看出来,使用市电不稳的地方压敏损坏率大些。
电磁烧igbt原因很多,这里建议修理电磁炉最好可以有台示波器。这样可以方面准确判断故障。
这里提供电磁炉爆igbt几大隐患问题。
一;同步电路异常(在线圈盘两端的有3~5个的300k~680k/2瓦的电阻,接到339的其中的一组的比较器)两端的电压相差应在0.2v之内。待机时电压在3v~5v左右,工作时在1.7v左右。
二;激励电路的脉宽过宽,尖峰,杂波等(脉宽过宽用示波器,在放上锅时,移走锅时示波器波形瞬间的波形变化不能超过0.2mv(示波器上两格)
三;散热不良
四;电路板自身设计存在问题(主要问题:地线不合理,线圈盘电感与电容匹配不良)此类很难解决
五;使用早期仙童fga25n120,fga15n120系列的igbt(igbt的后缀编号an和and)电磁炉,特别用此igbt用大功率的电磁炉上,电路设计稍微匹配不良,就很容易引起igbt过热而烧毁。
六;一般电容坏的比较多,特别是整流滤波电容“5UF/275V~X2(400VDC)”,逆程,谐振电容1200V0.3UF,两者都会威胁功率开关管,好一点的炉对前者会有保护功能,对后者,一般都会烧功率开关,所以碰到烧管的炉,一定先检查该电容有无开路,因为该两个电容经常工作在高温环境里,容易容量变小或开路,漏电
很多的朋友可能碰到过不少电磁炉间断加热的问题,有的是工作一秒钟就停掉了,再工作一秒,或者有的是几秒,就停掉,再工作几秒,如此反复,还有一种问题,跟这种情况差不多,就是正常放锅的时候就总是在检锅状态,而你把锅拿高一点就可以正常加热,这种问题,往往你检查的时候,却查不到什么问题,什么都换了却问题依旧,对付这种故障,经过本人的多次维修案例和研究,发现问题的根源是走线干扰,一般来说,从高压反馈回来的可能有2到4路,其中同步电路就占了两路,还有一路作浪涌监测,还有一路作高压检测,根据机型不同也许路数就不同,问题的根源呢就在这几条线,解决的方法呢,就是把从反馈电阻到339之间这几路的线路断开,要两边都断,然后再用导线连起来就可以了,也就是说中间的这一截线路不要,从反馈电阻的脚到339的脚完全用线连,这样呢这几条线就没有了干扰,电磁炉也就OK了。 这些只是个人的维修经验,有不对的地方请大家批评指正
电磁炉的分类及修理事项
在修理中常见的电磁炉大致分为两类:
由LM339(四电压比较器)输出脉冲信号。
1: 触发部分由正负两组电源,管子用PNP\NPN组成,类似这种电路,后级大多是用大功率管多个复合而成,组成高压开关部分,在代换中,前一个用带阻尼的行管替代即可。后几个则很难找到特性一致的管子,解决的办法是在散热器安装孔允许的情况下改用大电流的管子以减少数量,金属封装得如:BUS13A等,塑封的如:BU2525/BU2527/BU2532/D3998一类,用两个就可以。
2:工控管用IGBT绝缘栅开关器件;
这些机器特征是不用双电源触发,只有+5V和+12V,LM339通过触发集成块TA8316带动IGBT
这种情况下只能用此一类的管子代替,损坏程度大致为,只有管子坏,换上即可。其次是整流桥同时损坏,(一般是烧半壁),再其次是触发集成块TA8316坏,连带LM339N一起损坏的很少见。
对于高压模块,由于这方面的参数手册很少,希望大家搜集转贴,以便代换时参考。
不能贸然更换,最好有示波器先测其G极波形及幅值(没有的话用万用表测此点直流电压应在1-2.5伏之间变化)。接上线盘前要确定其它几路小电源供电正常。
2.1.2 IGBT
绝缘栅双极晶体管(Iusulated Gate Bipolar Transistor)简称IGBT,是一种集BJT的大电流密度和MOSFET等电压激励场控型器件优点于一体的高压、高速大功率器件。
检修电磁炉时需要注意的几点
一个正常状态的电磁炉表现为;正常启动,风扇转,正常加热,无锅时能保护并报警。但是如果有故障的话表现多种多样了。我这里有个小方法;在维修之前,建议在输入电源上【插头连线部分】串接150W---200W灯泡作限流,目的是防止造成不必要的损坏,同时观察灯泡的发光情况就可以初步判定故障部位。这样比较省时省力,同时避免走弯路。这里需要说明两点:
1,串接灯泡和通电前一定要测量电源插头的正反向阻值,只有在大于400欧姆时才可以试电,否则要开机检查。
2,维修完成后也可用此方法试机,可避免二次维修和故障扩大化。
具体观察结果总结如下;
1,上电灯泡就亮;主回路有短路现象。
2,上电不亮,能启动,但开始加热时灯泡常亮;同步电路或振荡电路有故障。
3,上电正常,放锅加热灯泡不亮,并同时显示故障代码或每隔三秒左右响一声,说明不检锅,故障主要在同步,震荡,推动或PWM脉宽调制电路和浪涌保护电路等,比较复杂。
4,上电正常,放锅加热,灯泡间歇亮,显示故障代码或隔1--3秒响一声,接假负载也如此,同样说明不检锅,但故障部位在电流检测电路或主回路电容。
正常应为,上电正常,不放锅具时灯泡间歇亮,放锅具后常亮,亮度随档位变化。
另外;电磁炉易损件为:桥堆,保险,风扇电机,+5V稳压器【7805】,压敏电阻,大功率电阻,电解电容,电源模块,瓷片和贴片电容。
这里还要说明的是,维修时,拆开机盖后可在加热线盘上垫上三个绝缘垫子加锅试机,可以省去多次拆装上盖的麻烦。
绝缘油测试装置中在线击穿电压传感器的应用
绝缘油 是一种广泛应用于电力变压器等电气设备中的绝缘介质。油浸变压器等充油电气设备中绝缘油起着绝缘与散热作用,但因种种原因,绝缘油的品质在长期运行过程中会发生变化,造成设备绝缘性能下降,影响电力设备的安全运行和维护。为保证变压器的运行安全必须对绝缘油的电气强度定期试验。击穿电压是表征绝缘油电气强度的一项重要指标。
绝缘油击穿电压
在规定条件下绝缘油发生击穿的电压称为绝缘油的击穿电压,单位一般为KV,绝缘油的击穿电压是衡量绝缘油在电气设备内部能耐受电压的能力(也称为绝缘油介电强度)而不被破快的尺度,是检验变压器油性能好坏 的主要手段之一。它实际上是测试绝缘油的瞬间击穿电压值。
绝缘油击穿原理
干净的绝缘油中总会有一些自由电子在外界的高能射线作用下游离出米,或在同部强场作用下从阴极冷射出来。这些电子在电场作用下,产生撞击游离,最终会导致绝缘油击穿于这种击穿完全由电的作用造成,故称为“电击穿”。工程上用的绝缘油总是不很纯净有各种各样的杂质,不纯净的绝缘油的击穿是由于杂质形成的“小桥”贯穿电极之间,而“小桥”的电导较大,使泄漏电流增大,发热严重,游离过程增强,最后导致“小桥”通道游离击穿。这一过程是与热过程紧密联系着,故称为“热击穿”
干燥清洁的油品具有相当高的击穿电压值,一般国产油的击穿电压值都在40kV以有的可达60kV以上,但当油中含有游离水、溶解水分或固形物时,由于这些杂质都具有比油本身大的电导率和介电常数,它们在电场(电压)作用下会构成导电桥路,而降低油的穿电压值,此试验可以判断油中是否存在有水分、杂质和导电微粒,但它不能判断油品是否存在有酸性物质或油泥。
当涉及到变压器的运行时,绝缘油是确保其长期使用寿命的最重要元素。然而,随着时间的推移,它会受到不良物质的污染,从而影响其功能。对这些杂质及其浓度的分析可以提供有关变压器本身使用寿命和老化的信息,同时提供有关电气绝缘性能的重要数据,从而确保变压器的正确运行。为确保变压器:安全可靠的运行,需要实时测量矿物油基变压器油的击穿电压、含水量和温度,为此工采网推荐德国Passerro 在线击穿电压传感器 绝缘油测试装置 BDVB TrafoStick TS4x : BDVB TrafoStick TS4x传感器是专为变压器现场永久使用而开发的,专门用于持续实时测量矿物油基变压器油的击穿电压、含水量和温度。变压器介电强度的自动实时监测可以观察变压器的安全状态,识别趋势,最重要的是,及时采取措施提高变压器和整个供电区域的安全性。
绝缘油击穿电压测试
击穿电压也是评定绝缘油(包括变压器油、电容器油、电缆油等)电气性能的一项指标,可用来判断绝缘油含水和其他悬浮物污染的程度,以及对注入设备前油品干燥和过滤程度的检验。 绝缘油的击穿电压是衡量它在电气设备内部能耐受电压的能力,是用来检验油品绝缘好坏的主要手段之一。
对于新变压器油,击穿电压值性能指标的好坏反映了绝缘油中是否存在有污染杂质,当然,实际上,在将油注入设备之前,都必须经过适当的设备处理至符合要求后,才能注入电气设备这是为了充分保证电气设备在投运时的安全性。
相关问答
压力变送器丝口为何容易损坏,?在压力变送器的使用过程中,由于它的膜片受到了硬物的作用力,从而导致隔离膜片发生损坏现象。2、测量介质的影响。当压力变送器用于蒸汽等温度较高的物质测...
海尔空调室内机温度 传感器 的位置在哪?_中央空调_舒适100网触屏版[回答]我们只要打开空调内部,一般我们开内机的面板,拿出过滤网,看见一个黑色的小头附着在内机的蒸发器上面,此传感器就是内机的温度传感器。如果打开电器...
ECT 传感器 1电路输入过高,怎么解决?断层扫描仪一般有三个ETC传感器,电路电压过高是左路传感器内部击穿的故障,更换一个新的ETC传感器就可以解决。传感器(英文名称:transducer/sensor)是一...断...
pnp感应器故障?1.传感器与设备接线错误、工作电压错误、设备短路等导致传感器内部电路烧毁、损坏、击穿等直接性不良。2.设备电路存在接触不良或不稳定性短路现象,使传感器...
三线 传感器 接线分正负接反了?首先是传感器不能正常工作,发射管不能发出信号,接收管不能接收信号;其次是,如果所加的反向电压过高,可能击穿器件,当然这种可能性不大,因为作为传感器,它...
起亚智跑20进气凸轮轴 传感器 没有信号故障?汽车发动机上的凸轮轴传感器信号丢失可能是:凸轮轴传感器自身故障,由于车辆长时间行驶,一些车辆的发动机持续高速运转后,温度比较高,这时候质量可靠性一般的...
5557火花保护器电路原理?5557火花保护器是一种常用于汽车点火系统的电路保护装置。其原理是通过检测点火线圈的高压输出信号,当检测到异常的火花电流或火花持续时间超过设定阈值时,保...
汽车打火发动慢是怎么回事?[回答]1.首先要明白的是这种打火困难(尤其是冬天)的情况,并不是一种真正的汽车故障,而是一种假象。2.究其原因,主要在于冬天的外界气温很低,我们的汽油的...
朗动发动机故障灯常亮问题[回答]特别是天气温度急剧下降时,由于电脑的温度修正问题启动时会导致发动机故障灯常亮,但只要温度下降到一定温度不起伏变化后就会相对稳定。发...发动...
双喜高压锅可能出现哪些电路故障呢? - JomzgEgP5 的回答 - 懂得1。故障现象:烧干或烧焦食物分析:此现象可能由:1。可能由浮子阀及锅盖漏气引起。2。限压放气阀排气引起。3。CPU检测到安装在中层板底的锅传感器(负...