上海羊羽卓进出口贸易有限公司

汽车g传感器是什么 汽车上常用传感器的作用与识别

发布时间:2025-01-20 14:01:15

汽车上常用传感器的作用与识别

1

空气流量计

L型电控燃油喷射系统使用。空气流量计安装在空气滤清器与节气门体之间,它用于测量空气流量。它能将吸入的空气量转换成电信号送至发动机ECU,作为决定喷油量的基本信号之一。

2

进气压力传感器

D型电控燃油喷射系统使用。进气压力传感器检测的是节气门后方的进气歧管的绝对压力,它根据发动机转速和负荷的大小检测出进气歧管内绝对压力的变化,然后转换成信号电压送至ECU,ECU根据此信号电压的大小,控制基本喷油量的大小。

3节气门位置传感器

它安装在节气门体上,与节气门轴保持联动,进而反映发动机的不同工况。它是怠速控制、起步加速控制、急加速控制、急减速控制、断油控制、点火提前角控制及自动变速器换挡控制的主要信号传感器。

4曲轴位置传感器

曲轴位置传感器的作用是感知曲轴转角的位置,以确定活塞在气缸中往复运动的位置,作为喷油定时和点火正时的基准点。

5凸轮轴位置传感器

凸轮轴位置传感器又称为气缸识别传感器。凸轮轴位置传感器的功用是采集配气凸轮轴的位置信号,并输入ECU,以便ECU识别发动机某气缸(如一缸)上止点位置,从而进行顺序喷油控制、点火时刻控制和爆燃控制。

6温度传感器

主要检测冷却液温度、进气温度、排气温度等,将它们转换成电信号,从而控制喷油器开启时刻和持续时间。

7氧传感器

氧传感器安装在排气管上,通过检测汽车尾气中氧含量以及气缸中空燃比,向供油系统发出负反馈信号,以修正喷油脉冲,将空燃比调整到理论值,达到理想的排气净化效果。

8爆震传感器

爆震传感器安装在缸体上,向ECU输入气缸压力或发动机震动信号,经ECU处理后,控制点火提前角,抑制爆燃产生。

9车速传感器

用于检测自动变速器输出轴的转速。电控单元根据车速传感器的信号计算车速,作为换挡控制的依据。

10 输入轴转速传感器

输入轴转速传感器用于检测输入轴转速,并将信号送入ECU,使ECU更精确地控制换挡过程,以改善换挡感觉,提高汽车的行驶性能。

11 冷却液温度传感器

当冷却液低于预定温度时,如果变速器换入超速挡,发动机性能及车辆乘坐的舒适性会受到影响。为了防止这种情况发生,在冷却液达到预定温度(例如105℃)以前,自动变速器不会换入最高挡。

12液压油温度传感器

用于检测自动变速器液压油的温度,作为自动变速器控制单元进行换挡控制、油压控制和锁止离合器控制的依据。

此外还包括各种开关信号,如空挡启动开关信号、强制降挡开关信号、行驶模式开关信号等。

13车轮转速传感器

车轮转速传感器用于检测车轮的转速,并将车轮的转速信号传给ABS电子控制单元。电控单元根据此信号计算汽车的参考车速、各车轮速度和减速度,确定各车轮的滑移率。

14加速度传感器(减速度传感器)

加速度传感器分为正加速度传感器和负加速度传感器,负加速度传感器也称为减速度传感器,又称G传感器。它一般应用于四轮驱动的汽车上,其作用是在汽车制动时,获得汽车减速度信号,从而识别是否是雪路、冰路等易滑路面。

15触发碰撞传感器

触发碰撞传感器也称为碰撞强度传感器,用于检测碰撞时的加速度变化,并将碰撞信号传给安全气囊ECU,作为安全气囊ECU的触发信号。

16防护碰撞传感器

防护碰撞传感器也称为安全碰撞传感器,它与触发碰撞传感器串联,用于防止安全气囊误爆。

17转矩传感器

转矩传感器不断地测出转向轴上的转矩信号,电控单元根据这些输入信号,确定助力转矩的大小和方向,即选定电动机的电流和转向,调整转向辅助动力的大小。

18 方向盘转角传感器

方向盘转角传感器集成在方向盘下的时钟弹簧内,用来检测方向盘的中间位置、转动方向、转动角度和速度信号。这些信号用于电控助力转向、车辆稳定控制、电控悬架中。

19车身高度传感器

用来检测汽车垂直方向上高度的变化,其信号可使悬架控制单元感受到车辆高度变化,通过有关执行元件调整汽车车身高度。

20 水平传感器

主要检测汽车是否处于水平状态,为电控悬架和大灯自动调平系统提供辅助信号。本期内容来源《汽车传感器入门到精通全图解》 (来源:汽车维修技术与知识)

汽车里的毫米波雷达你知多少?

雷达对我们来说并不陌生,它在生活的方方面面都会用到。如今它也出现在了汽车里面,随着智能驾驶不断发展,传感器已成为打造汽车生态的主要砝码之一,无论是激光雷达、毫米波雷达、摄像头等,都将成为日后必要的配件。下面我们就来科普一下毫米波雷达到底是什么?

此文分两部分,首先简单介绍一下什么叫雷达,之后再由浅入深的告诉你什么是毫米波。

雷达原理

雷达是利用无线电回波以探测目标方向和距离的一种装置,用于无线电探向与测距,全世界开始熟悉雷达是在1940年的不列颠空战中,七百架载有雷达的英国战斗机,击败两千架来袭的德国轰炸机,改写了历史。二战后,雷达开始有许多和平用途。

雷达的工作体制主要分为脉冲方式和连续波方式:

连续波(ContinuousWave:CW)雷达:指发射连续波信号,主要用来测量目标的速度。如需要同时测量目标的距离,则需要对发射信号进行调制,例如对连续波的正弦波信号进行周期性的频率调制。而脉冲雷达发射的波形是矩形脉冲,按一定的或者交错的重复周期工作。

现代脉冲雷达技术已经相当成熟,但是从原理上来讲同时解决距离和速度测量的模糊问题是不可能的,这就需要采用多重复脉冲频率(PRF)的方法来解决距离和速度模糊,因而不仅使系统的数据传输率下降,而且不利于信噪比(SNR)的提高。

我们知道雷达使用的是电磁波,电磁波这个媒介决定了微波雷达区别于超声、声呐等方式。电磁波是交变电磁场,在自由空间传播,这个电磁场交变的频率决定了雷达的基本属性。平时用的无线电是低于300Mhz的频段,主要是AM,FM广播使用。而微波频段是通信和雷达使用的主要频段,这是个很宽的频,有300Mhz--300GHz,毫米波是微波的一个子频段。

毫米波的频段在哪儿

毫米波这个波段频率很高,但是这个频段里很多频率区域的电磁波在空气里传播很容易被水分子、氧气吸收,所以可用的就是几个典型的频段,24、60、77、120GHz。当然24GHz很特别,他严格来讲不是毫米波,因为它的波长在1cm左右。但是它是最早被利用的。现在各个国家把24GHz划出来可以民用,77GHz划分给了汽车防撞雷达,24Ghz也在汽车里用得最早,关于车载雷达原理,后面还会重点介绍。

同厘米波导引头相比,毫米波导引头具有体积小、质量轻和空间分辨率高的特点。与红外、激光、电视等光学导引头相比,毫米波导引头穿透雾、烟、灰尘的能力强,具有全天候(大雨天除外)全天时的特点。毫米波雷达可以全天候工作,不受天气状况的影响,而恶劣的气候环境正是导致交通事故的主要原因之一。与光波相比,它们利用大气窗口(毫米波与亚毫米波在大气中传播时,由于气体分子谐振吸收所致的某些衰减为极小值的频率)传播时的衰减小,受自然光和热辐射源影响小。

毫米波在雷达中应用也会受到限制:雨、雾和湿雪等高潮湿环境的衰减,以及大功率器件和插损的影响会降低毫米波雷达的探测距离;树丛穿透能力差,相比微波,对密树丛穿透力低。

毫米波雷达如何工作

把雷达与毫米波融合,就形成了一个神通广大的器件——毫米波雷达。

所谓的毫米波雷达,就是指工作频段在毫米波频段的雷达,测距原理跟一般雷达一样,把无线电波(雷达波)发出去,然后接收回波,根据收发之间的时间差测得目标的位置数据。

它和大多数微波雷达一样,有波束的概念,发射出去的电磁波是一个锥状的波束,而不像激光是一条线。这是因为这个波段的天线,主要以电磁辐射,而不是光粒子发射为主要方法。这一点,雷达和超声是一样,这个波束的方式,导致它优缺点。

优点:可靠,因为反射面大;

缺点:分辨力不高。

毫米波雷达三大用处:对目标进行测距、测速以及方位测量。

测距:(TOF)通过给目标连续发送光脉冲,然后用传感器接收从物体返回的光,通过探测光脉冲的飞行(往返)时间来得到目标物距离。

测速:根据多普勒效应,通过计算返回接收天线的雷达波的频率变化就可以得到目标相对于雷达的运动速度,简单地说就是相对速度正比于频率变化量。

测方位角:通过并列的接收天线收到同一目标反射的雷达波的相位差计算得到目标的方位角;

神奇的多普勒原理

毫米波雷达测速和普通雷达一样,都是基于多普勒效应(Dopler Effect)原理。当声音,光和无线电波等振动源与观测者以相对速度相对运动时,观测者所收到的振动频率与振动源所发出的频率有所不同。当发射的电磁波和被探测目标有相对移动、回波的频率会和发射波的频率不同。

当目标向雷达天线靠近时,反射信号频率将高于发射机频率;反之,当目标远离天线而去时,反射信号频率将低于发射机频率。由多普勒效应所形成的频率变化叫做多普勒频移,它与相对速度成正比,与振动频率成反比。

所以,通过检测这个频率差,可以测得目标相对于雷达的移动速度,也就是目标与雷达的相对速度。根据发射脉冲和接收的时间差,可以测出目标的距离。同时用频率过滤方法检测目标的多普勒频率谱线,滤除干扰杂波的谱线,可使雷达从强杂波中分辨出目标信号。所以脉冲多普勒雷达比普通雷达的抗杂波干扰能力强,能探测出隐蔽在背景中的活动目标。

优势在哪儿

以前人们常说的超声波雷达、红外雷达,甚至是如今的激光雷达都是通过对回波的检测,与发射信号相比较,得到脉冲或相位的差值,从而计算出发射与接收信号的时间差。再分别对应于超声波、红外线、激光在空气中的传播速度,计算出与障碍物的距离与相对速度。毫米波雷达与光学和红外线雷达相比不受目标物体形状颜色的干扰,与超声波相比不受大气紊流的影响,因而具有稳定的探测性能;环境适应性好。受天气和外界环境的变化的影响小,雨雪,灰尘,阳光都对其没有干扰;多普勒频移大,测量相对速度的精度提高。

总结一下它的特性:

1、频带极宽,在目前所利用的35G、94G这两个大气窗口中可利用带宽分别为16G和23G,适用与各种宽带信号处理;

2、可以在小的天线孔径下得到窄波束,方向性好,有极高的空间分辨力,跟踪精度高;

3、有较高的多普勒带宽,多普勒效应明显,具有良好的多普勒分辨力,测速精度较高;

4、地面杂波和多径效应影响小,跟踪性能好;

5、毫米波散射特性对目标形状的细节敏感,因而,可提高多目标分辨和对目标识别的能力与成像质量;

6、由于毫米波雷达以窄波束发射,具有低被截获性能,抗电子干扰性能好;

7、毫米波雷达具有一定的反隐身功能。

8、毫米波具有穿透烟、灰尘和雾的能力,可全天候工作。

你知道你的倒车雷达是什么类型吗?

这里简单提一下超声波雷达,在我们倒车时候使用的就是超声波雷达,俗称倒车雷达。在倒车时,超声波倒车雷采用超声波测距原理探测汽车尾部离障碍物的距离,是汽车泊车辅助装置。

原理是这样:

超声波发射器向外面某一个方向发射出超声波信号,在发射超声波时刻的同时开始进行计时,超声波通过空气进行传播,传播途中遇到障碍物就会立即返射传播回来,超声波接收器在收到反射波的时刻就立即停止计时。在空气中超声波的传播速度是340m/s,计时器通过记录时间t,就可以测算出从发射点到障碍物之间的距离长度(s),即:s=340t/2。

超声波的能量消耗较缓慢,在介质中传播的距离比较远,穿透性强,测距的方法简单,成本低。

但是它在速度很高情况下测量距离有一定的局限性,这是因为超声波的传输速度容易受天气情况的影响,在不同的天气情况下,超声波的传输速度不同,而且传播速度较慢,当汽车高速行驶时,使用超声波测距无法跟上汽车的车距实时变化,误差较大。另一方面,超声波散射角大,方向性较差,在测量较远距离的目标时,其回波信号会比较的弱,影响测量精度。但是,在短距离测量中,超声波测距传感器具有非常大的优势。

现在大多数都配置有倒车雷达。

毫米波在汽车上的应用

回到毫米波上,如果将它融合在汽车里会有什么帮助?我们先对车载雷达有个直观地认识:

对于车辆安全来说,最主要的判断依据是两车之间的相对距离和相对速度信息。高速行驶中的车辆如果距离过近,则容易造成追尾事故。因此,常用的防撞系统都将对车辆之间的相对距离的测量作为主要的检测任务。

目前汽车领域主要有三种毫米波雷达:短距的sRR、中距的MRR和长距的LRR。

SRR目前价格大约45-60美元一只,MRR大约45美元,LRR大约80-90美元。车载雷达的频率主要分为24GHz频段和77GHz频段,其中77gHz频段代表着未来的趋势:这是国际电信联盟专门划分给车用雷达的频段。严格来说77GHz的雷达才属于毫米波雷达,但是实际上24GHz的雷达也被称为毫米波雷达长距离与中距离毫米波雷达都是77GHz,短距离是24GHz。其中,77GHz 毫米波雷达主要用在车的正前方,用于对中远距离物体的探测,24GHz 毫米波雷达一般被安装在车侧方和后方,用于盲点检测,辅助停车系统等。

各个国家对车载毫米波雷达分配的频段各有不同,但主要集中在24GHz和77GHz,少数国家(如日本)采用60GHz频段。由于77G相对于24G的诸多优势,未来全球车载毫米波雷达的频段会趋同于77GHz频段(76-81GHz)。

车载毫米波雷达工作原理是这样的:

雷达通过天线向外发射毫米波,接收目标反射信号,经后方处理快速准确地获取汽车周围的物理环境信息(如汽车与其他物体之间的相对距离、相对速度、角度、运动方向等),然后根据所探知的物体信息进行目标追踪和识别分类,进而结合车身动态信息进行数据融合,最终通过ECU进行智能处理。经合理决策后,以声、光及触觉等多种方式告知或警告驾驶员,或及时对汽车做出主动干预,从而保证驾驶过程的安全性和舒适性,减少事故发生几率。

在汽车主动安全领域,汽车毫米波雷达传感器是核心部件之一,其中77GHZ毫米波雷达是智能汽车上必不可少的关键部件,它能够在全天候场景下快速感知0-200米范围内周边环境物体距离、速度、方位角等信息的传感器件。

车载毫米波雷达最常见的三种用途是:

1. ACC(自适应巡航)

2. BSD&LCA(盲点监测和变道辅助)

3. AEB(自动紧急制动,通常配合摄像头进行数据融合)

简单介绍一下它的工作体制

根据辐射电磁波方式不同,毫米波雷达主要有脉冲体制以及连续波体制两种工作体制。其中连续波又可以分为FSK(频移键控)、PSK(相移键控)、CW(恒频连续波)、FMCW(调频连续波)等方式。

毫米波雷达将如何发展?

1.高分辨率

高分辨率一直是毫米波雷达的技术指标,这里有两条技术路线:

1.增加带宽,如76-81GHz,最大带宽可达5GHz。

2.多级联,增加通道数。

在2017年,德州仪器推出了号称全球精度最高单芯片毫米波雷达传感器,也就是工作与76-81GHz的AWR1x和WR1x收发器,然后基于这两片收发器推出了数个76-81GHz毫米波雷达前端,包括AWR124、AWR1443、AWR1642。

2.MIMO

MIMO雷达基本含义:雷达采用多个发射天线,同时发射相互正交的信号,对目标进行照射,再用多个接受天线接收目标回波信号并进行综合处理,提取目标空间位置,运动状态等信息。

3.CMOS RF工艺

毫米波雷达最突出的优势是价格低廉,即便是和视觉系统相比价格也不高。同时毫米波雷达是主动型器件,而视觉系统是被动型器件,主动型器件有比较广阔的挖掘潜力,而被动型器件CMOS图像传感器自问世以来,整体结构未有变化。而收发器从Sige转换为硅基CMOS后,性价比进一步提升。

毫米波雷达市场格局

从国外主要毫米波雷达供应商的产品技术参数来看,各公司在毫米波雷达发展上各有不同。博世的毫米波雷达产品主要以76-77GHz为主,产品技术先进,主要包括MRR(中距离)和LRR(远距离)两个系列,其中LLR4产品最大探测距离可以达到250米,在同类产品中处于领先位置

相关问答

什么是G传感器 ?

G传感器就是汽车发动机用加速度传感器。加速度传感器用于检测汽车在行驶过程中垂直方向的振动,是对车辆在起伏路面行驶状态进行判定的重要元件,是发动机管理...

汽车 里程表 传感器 插头上的 g是什么 线_汽配人问答

[最佳回答]应该是感应线吧传感器(英文名称:transducer/sensor)是一种检测装置,能感受到被测量的信息,并能将感受到的信息,按一定规律变换成为电信号或其他所...

什么是G传感器 ?

G传感器是一种加速度传感器,它能够检测物体的加速度、重力以及角加速度方向。它可以将这些信息转变成电信号,从而被计算机识别并执行相应的操作。G传感器通常...

什么是G传感器 ?

G传感器是一种用于测量重力加速度以及设备在三个空间维度上的加速度变化的传感器。它是一种内置于智能手机、平板电脑和其他移动设备中的微型加速度计。G传感...

a- g传感器是什么 ?

a—G传感器就是汽车发动机用加速度传感器。加速度传感器用于检测汽车在行驶过程中垂直方向的振动,是对车辆在起伏路面行驶状态进行判定的重要元件,是发动机管...

斯巴鲁傲虎 G传感器 信号 是什么 意思?

斯巴鲁ABS故障码G传感器异常是减速度传感器,对地短路就是传感器的一端不该接地却接地了。G信号用于判别气缸及检测活塞上止点位置,相当于日产公司磁脉冲式曲轴...

宝来凸轮轴位置 传感器 电路 g 信号什么意思?_车主指南

[回答]这是凸轮轴位置传感器的信号故障,首先需要检查线路连接是否正常有无断路或接触不良,如果线路正常就是传感器本身损坏需要更换即可恢复正常,及时检...

汽车 减速度 传感器 现在用于 什么汽车 ?

减速度传感器目前,在一些四轮驱动的汽车上,还装有汽车减速度传感器,又称G传感器。其作用是在汽车制动时,获得汽车减速度信号。因为汽车在高附着系数路面上...

奥迪车外温度 传感器G17 的工作原理 - 汽车维修 技术网

[回答]奥迪车外温度传感器G17的工作原理车外温度传感器G17位于车身前部。它用于判断实际的外部温度。控制单元按照这个温度信号来操纵温度翻板和新鲜空气...

奥迪空气质量 传感器G238 的作用和原理 - 汽车维修 技术网

[回答]空气质量传感器G238的工作原理与氧传感器相同,其外形及电路原理如图所示。其测量元件是一个采用半导体技术的混合氧化物传感器(氧化锡),使用铂、钯...

展开全部内容