上海羊羽卓进出口贸易有限公司

微纳米传感器 剑桥大学黄艳燕团队联合发明3D打印微纳米纤维传感器

发布时间:2024-10-08 22:10:22

剑桥大学黄艳燕团队联合发明3D打印微纳米纤维传感器

来自云南大理的 26 岁白族留学生王文宇,和课题组联合研发出微纳米导电纤维的 3D 打印技术。论文于 9 月 30 日以《面向平面和 3D 光电和传感器件的纤维打印》“Inflight fiber printing toward array and 3D optoelectronic and sensing architectures” 为题发表在 Science Advances 上。

同日,该研究还登上剑桥大学主页的热点新闻,其中王文宇是该论文的第一作者,他的导师黄艳燕是论文的通讯作者。

图 | 本次研究登上剑桥大学官网首页(来源:剑桥大学)

DeepTech 联系到正在剑桥大学读博的王文宇和他的导师黄艳燕,他们表示本次研究的主要贡献,是提出一种打印导电性极好的超细纤维的首创新方法。

图 | 王文宇(来源:受访者)

比头发细一百倍、和铜丝一样导电的微纳米纤维

微纳米导电纤维具有较高的长径比、极低的弯曲刚度和高透明度。假如把微纳米导电纤维组装为 3D 结构,就能开发出新型透明透气的柔性电子器件,其可以用于健康监测、物联网和生物电子传感器等。

图 | 悬浮纤维结构的 IFP 制备

基于上述思路,该团队历时四年进行研发,并将成果展示在本次论文中:一种通过同心喷头、来快速精确且灵活地打印悬空微纳米纤维的新方法。

据王文宇介绍,微纳米纤维结构跟普通电线相似,它是一个双层结构,内层是导电内心,外层是绝缘高分子包裹物。其直径只有 1-3μm,和蜘蛛网粗细差不多,只有人类发丝直径的 1% 到 3%。

因此,用微纳米纤维制作的呼吸传感器,是个超小型悬空透明体,它不依附任何底板、比表面积也比较大,因此可以非常灵敏地感受到呼吸中的湿气。而且,由于其比较细且可以悬空,这让气流可以直接透过纤维网,所以多层纤维网叠加起来就能够实现气流时空分布的三维检测,尽管该纤维就像蜘蛛丝一样细,但也拥有足够的韧性,不会轻易被气流吹断。

该研究团队展示了利用银纳米颗粒或者有机导电高分子材料组成的多材料微纳米纤维阵列。相比传统纤维制造工艺,该工艺具有更好的普适性,能够打印不同材料组成的微纳米纤维,同时,能打印出悬空的微纳米纤维网。

使用 iFP 光纤创建电路结构

由于 iFP(Inflight fiber printing,悬浮纤维打印)可打印出的纤维不依附于任何底板,因此与标准透明导体薄膜相比,无衬底导电纤维阵列不存在薄膜衬底吸收和反射光线等问题,因此明显更为透明。

在此基础上,该团队展示了 iFP 流程打印的新型电路架构,即 3D “悬浮 LED 电路” 的概念。此外,整个 iFP 流程在低于 100°C 的环境中完成,因此,纤维阵列能直接集成到熔融温度较低的材料上,如常用的 3D 打印塑料。

这一优势为低成本和易组装的 3D “悬浮 LED 电路” 成为可能。本次研究还首次提出一种新方法,即采用一步到位的方法来将打印出来的微纳米导电纤维直接集成到电路上,从而减少了传统导电纤维制备工艺中不可避免的复杂后处理。

同时,iFP 过程还可以将微纳米纤维在打印的同时就将纤维节点 “焊接” 起来,像金属和高分子这些差异很大的导电纤维,都能被一步到位的 “焊接” 在同一个多材料纤维网络中。在具体应用中,由于微纳米电子纤维具有高导电性和机械强度,因此能连接和支撑悬空的微小电子器件,从而制成 3D “悬浮电路”。

基于此,王文宇和团队制作出一款可穿戴呼吸传感器,由于导电纤维具有高透气性,该传感器能在水汽自由透过的情况下,检测呼出气体水汽的时空分布信息。

图 | 可穿戴的低成本呼吸检测器

具体来说,该传感器可以检测正常呼吸、快速呼吸和咳嗽等不同状态下的呼吸频率和呼出气体扩散情况。由于 iFP 打印出的微纳米纤维电阻和湿度成正相关,因此直接将在纤维阵列两端检测到的电阻除以一个系数后,就直接得出湿度,这样做的好处是可以让检测更高效,更低耗能和更直观。

该团队告诉 DeepTech,该传感器在检测快速呼吸时的分辨率,明显优于同类商用传感器,这得益于微纳米纤维的高灵敏度。研究小组发现,织物或手术口罩的大部分泄漏均来自口罩正面,而 N95 口罩的大部分泄漏来自顶部和侧面与脸鼻接触的部位。

但是,两种类型的口罩在正确佩戴时均有助于减弱正向的呼出气流强度。在实验中,王文宇将呼吸传感器置于不同类型口罩的外侧,以检测正常呼吸和咳嗽时呼出气流的分布,结果发现一次性口罩和 N95 口罩只要正确佩戴,均可以减弱正向的呼出气流强度。

这样一款多材料的三维可穿戴传感器,和智能手机结合在一起,可以方便的检测呼吸时的口部状况、呼吸时气体的走向、气体的湿度、呼吸的频率、咳嗽声音的异常。

这么多维度信息结合起来,可为远程健康诊断提供更好、更便宜的解决方案。尽管该传感器目前无法做到检测病毒颗粒,但是诸多研究都表明,新冠病毒等病毒和微生物可通过呼吸道飞沫和气溶胶传播。

因此,通过测量不同类型的呼出气体分布和方向,可以指导人们合理选用和佩戴口罩。除纤维传感器以外,3D 打印微纳米导电纤维技术还可制备出很多产品。

比如,该纤维还能引导且感受到生物细胞在纤维上的表现。因为微纳米纤维是用 3D 打印出来的,而 3D 打印的优势,在于其可以灵活打印各种模型。以本次展示的多种产品模型为例,后续还可进行再转化和多方面的应用。

王文宇表示,日后还可通过技术优化,来让该纤维检测呼吸时口中的其他气体,比如呼出来的氨气、二氧化碳、酒精含量等,这些气体的含量可以间接的反映身体的健康状况。

除呼吸传感器外,3D 纤维打印技术还可用于制造生物相容性导电高分子纤维,这种纤维可引导细胞运动、并能将这种动态过程以电信号方式输出,这可给日后生物电子设备的发展和 3D 细胞检测,提供一定的研究思路。

而小型导电纤维之所以表现优异,一是因为其具有结构优势,二是因为检测直观。因为它的体积非常小,因此其底表面积的值就越大,再加上它可以悬空,所以能灵敏地检测湿气的变化。

据王文宇的导师黄艳燕介绍,本次传感器的制造材料成本大概在 10 元人民币以下。如果大批量生产价格会更低,再考虑人工和机器,成本估计大约几块钱。

不过黄艳燕也对其他媒体坦言:“与传统的薄膜技术相比,由小型导电纤维制成的传感器对 3D 流体和气体的体积检测特别有用,但到目前为止,打印它们并将其结合到设备中大规模制造它们一直是一个挑战。”

谈及研究中难忘的事情,王文宇表示,该项目持续长达三四年,才做出这样的成果,期间黄艳燕这位来自中国深圳的华人教授,给了他很多指导。

图 | 黄艳燕(来源:黄艳燕个人首页)

一年多前,在课题组进行的过程中,黄艳燕刚好生二宝,但是即便刚生完宝宝,她也没有落下课题组工作,甚至让学生去她家里开会和讨论。

有一次,王文宇去黄艳燕家里开会,突然听到小孩在二楼的哭声。这让他非常感慨,作为一名母亲和一位教授,同时要奔波在家庭和课题组两头。

与此同时,黄艳燕本身也是剑桥大学工程系里面少有的年轻女性科学家。而黄艳燕眼中的王文宇,则一个善于合作的人。她说在合作论文时,即便王文宇是二作、或者是署名更靠后的论文,他都会很努力地去做。

来剑桥之前,王文宇在清华大学机械工程系学习。来剑桥之后,他曾接待清华校友参观他所在的实验室。学习之余,他还是清华校友会剑桥地区的负责人,平日负责组织校友活动,2020 年初还曾组织校友为武汉募捐医疗用品,捐赠物品分别发往湖北武汉、黄冈和宜昌的三家医院。

图 | 带学弟学妹参观剑桥实验室,戴手套者为王文宇

这位高中毕业于云南师大附中的白族男孩,课余喜欢读书和旅游。如果说实验室的小小天地,是他发挥才华的专业园圃,那么,在海外运营清华校友会,并号召捐赠疫情中的湖北,则是这位 90 后身在海外不忘家国的体现。他课余发表过文章的公众号,也经常发布华为英国的招聘信息。

王文宇和导师黄艳燕都来自中国,这次成果已经得到很多外媒报道,但黄艳燕收到 DeepTech 的报道邀约时,虽然她的中文不甚流畅,但还是尽量用中文交流。技术上进,情怀热切,是这对华人师生给人的最大印象。

纳米线传感器来了,传感芯片还会远吗

“无旁路电路”纳米线桥接生长方案 黄辉供图

微型气体检测仪 黄辉供图

人工智能、可穿戴装备、物联网等信息技术迅猛发展,需要海量的传感器提供支持,大数据和云计算等业务也需要各种传感器实时采集数据来支撑。但目前的传感器存在国产化低、产品偏低端、技术创新薄弱、生产工艺落后等问题。

日前,大连理工大学电子科学与技术学院教授黄辉团队发明了无漏电流“纳米线桥接生长技术”,解决了纳米线器件的排列组装、电极接触及材料稳定性问题,研制出高可靠性、低功耗及高灵敏度的GaN纳米线气体传感器,该传感器可推广至生物检测以及应力应变检测等,相关研究成果发表于《纳米快报》。

微纳传感有个“坎”

近年来,半导体集成电路芯片(IC)发展迅猛,推动物联网和人工智能产业兴起。“如果把IC比作人的大脑(处理信息),传感器则相当于人的感知器官(获取信息)”黄辉告诉《中国科学报》,“IC和传感器相互依存。”

然而,传感器、特别是微纳传感器的发展速度,远远滞后于IC的发展水平。黄辉认为,微纳传感器、传感芯片将是继IC产业之后的另一重大产业。

黄辉介绍,目前广泛应用的最小的传感器是MEMS传感器。

MEMS传感器(微机电系统)是采用微电子和微机械加工技术制造出来的新型传感器。其内部结构一般在微米甚至纳米量级,是一个独立的智能系统。与传统的传感器相比,它具有体积小、重量轻、成本低、功耗低、可靠性高、适于批量化生产、易于集成和实现智能化的特点。同时,在微米量级的特征尺寸使得它可以完成某些传统机械传感器所不能实现的功能。

“而与MEMS器件相比,半导体纳米线的尺度缩小了1000倍,面积缩小100万倍。因此,纳米线是最小的器件,也是微纳传感器的理想选择。”黄辉说。

相较于传统体材料和薄膜材料,半导体纳米线具有许多独特优势:大的比表面积可以提高器件的灵敏度,易于形变可以提升材料的集成能力,纳米级的导光和导电通道可以制作单根纳米线光子器件。此外,纳米线优异的机械性能以及灵活多样的结构,使其具有较好的柔韧性,且可形成芯包层和交叉网格结构。

但是,纳米线器件的实用化还面临一系列问题。北京邮电大学电子工程学院教授忻向军向《中国科学报》介绍,纳米线的材料生长和器件制备是分开的,需要进行剥离、转移、排列定位、以及镀膜等步骤,工艺复杂而且会损伤和污染纳米线。

此外,纳米线难于操控,很难对其进行排列定位。“而且纳米线与金属电极的接触面积非常小,因此,电极接触电阻很大,比纳米线自身的电阻高出近两个数量级。” 忻向军说。

纳米线传感器“长”出来了

为解决纳米线排列定位难、电极接触面积小等一系列问题,2004年,惠普公司与加州大学合作发明了一种“纳米线桥接生长技术”。通过在SOI衬底上刻蚀凹槽,纳米线从凹槽一侧开始生长并与另一侧对接,从而可以在凹槽侧边台面上制备金属电极。

黄辉表示,这种通过“生长”使纳米线和侧壁融为一体的方案,避免了在纳米线表面制备金属电极,使电极接触电阻降低了两个数量级、噪声降低了三个数量级。此外,无需排列定位纳米线,简化了制备工艺,消除了纳米线的表面污染和损伤。

然而,惠普公司纳米线桥接生长方案并未获得推广。因该方法纳米线在生长过程中,通常会在凹槽底部沉积一层多晶膜(寄生沉积层),该寄生沉积层会产生较大旁路电流,极大劣化纳米线器件的性能。

为此,黄辉团队首次研究了纳米线桥接生长中的寄生沉积效应,发明了一种桥接生长方法,结合气流遮挡效应与表面钝化效应,解决寄生沉积问题。研究人员采用新的刻槽方案和凹槽结构,避免凹槽底部的材料沉积,实现纳米线的桥接生长。

黄辉告诉记者:“采用GaN缓冲层,通过调节纳米线的生长条件,如气流、催化剂、温度梯度等,可改变纳米线生长位置、方向、直径以及长度,从GaN纳米线、纳米针至微米柱,实现纳米线的可控生长。”

据悉,GaN材料是第三代半导体,具有优异的稳定性和生物兼容性,可耐高温、抗氧化、耐酸碱腐蚀,适用于严酷环境下液体和气体样品的检测。“实验证明氢氟酸环境下腐蚀48小时,未对GaN纳米线电阻产生影响,其应用领域非常广泛。”黄辉说。

在此基础上,团队研制出了集成纳米线气体传感器——GaN纳米线气体传感器。经检测,该传感器可在室温下工作,8个月电阻变化率<0.8%,且NO2检测限为0.5ppb,具有高稳定性、低功耗以及高灵敏度等特点。

忻向军表示,该技术首次实现了“无漏电流”GaN桥接纳米线,研制出的GaN纳米线气体传感器将推动传感芯片的发展。

传感芯片即将到来

微纳传感器属于颠覆性技术,蕴含巨大的创新与市场空间。近年来,微纳传感器已成为政府及社会资金投资的热点领域之一。“微钠传感器与物联网、5G的发展关系密切,在手机、汽车、医疗和消费领域得到广泛应用,它的发展形势一片大好。”忻向军说。

美国密歇根大学电子和计算机工程系系主任表示,以前传感器需要三大组件:电子器件、无线组网系统、无线网络系统。未来,传感器和传感器应用将无处不在,当它们组合成网络后,便可以通过微纳传感器,在很小的环境中达成更好的传感器网络。

“可能仅仅1毫米就可以装载数百万个传感器,这样的设备能够提供非常微型的芯片,能够非常准时、及时、准确地监测数据,这将帮助我们在当前不同的能源系统、电能系统中发挥作用。”Khalil Najaf说。

黄辉表示,团队下一步将着力研制功耗更低、体积更小的GaN纳米线气体传感器,并尝试做成传感芯片。“最理想的情况是与集成电路芯片做在一起,感知、控制、处理信号完美结合,能得到更广泛的应用。”

对此,忻向军指出,传感芯片具有很好的发展前景和巨大潜力,值得研发推广。同时他建议,传感芯片技术一旦成熟,应迅速与行业内专业人士合作推广,抢占先机。(辛雨)

相关论文信息: https://doi.org/10.1021/acs.nanolett.8b04846

相关问答

纳米 box与 纳米 ex1的区别?

纳米BOX和纳米EX1是两种不同的产品,它们在设计和功能上都有所不同。纳米BOX是一款便携式蓝牙音箱,具有防水、防尘、耐摔等特点。它支持蓝牙5.0和AAC编解码,最...

传感器 芯片是多少 纳米 的?

当今科技的发展要求材料的超微化、智能化、元件的高集成、高密度存储和超快传输等特性,为纳米科技和纳米材料的应用提供了广阔的空间。利用纳米技术制作的传...

纳米传感器 微米 传感器哪个精度高呀? - 137****2092 的回答...

1纳米=10^-9米,1000000微米=1米,当然是纳米的精度更高。纳米的精度会高点一般国内所谓高精度是达到微米级,进口的激光位移传感器和电涡流传感器都...

纳米传感器 哪个牌子好?

[回答]口罩机接近传感器在换为电气信号的检测方法中,包含利用电磁感应引起的检测目标的金属体中发生的涡电流的方法、捕测体的挨近引起的电气信号的容量变...

纳米 纤维 传感器 前景怎么样?

传感器的前景,并且这种纳米的纤维还是会有很好的前景的,因为这种前景也是因为高科技的一种产物。传感器的前景,并且这种纳米的纤维还是会有很好的前景的,因为...

世界上有什么 纳米 产品?

纳米产品涵盖了多个领域,主要包括:纳米材料。如纳米银、纳米二氧化钛、纳米氧化锌、碳纳米管、纳米氧化铝等,这些材料因其独特的物理和化学性质,被应用于医...

ICEO是什么?

“ionconcentrationpolarization-inducedelectrokineticphenomena”的缩写,指的是一种利用离子浓度极化引起的电动力学现象的技术。在这种技...

什么是 纳米 小分子技术?

纳米技术,也称毫微技术,是一种用单个原子、分子制造物质的技术。纳米技术是研究结构尺寸在1纳米至100纳米范围内材料的性质和应用的一种技术。1981年扫描隧道...

纳光纤和 微纳米 光纤是一个意思吗?

[回答]我的理解:纳米尺度——几十到几百个原子堆积的尺寸;微纳尺度——接近纳米尺度,几十纳米或者几百纳米的尺寸(介于微米与纳米之间);苏州硅时代电子科...

纳米 机器人除了可以用于治病外还可以干什么?

纳米机器人定义:一般认为,纳米机器人是根据分子水平的生物学原理为设计原型,在纳米尺度上应用生物学原理,研制出的可编程分子机器人。题主提到的用于治病属...

展开全部内容