上海羊羽卓进出口贸易有限公司

红外线气体传感器 技术文章 红外气体传感器技术详解

发布时间:2024-10-07 10:10:07

技术文章 红外气体传感器技术详解

一、什么是红外气体传感器?

红外气体传感器是一种基于不同气体分子的近红外光谱选择吸收特性,利用气体浓度与吸收强度关系鉴别气体组分并确定其浓度的气体传感装置。

天禹智控红外气体传感器模块

它与其他类别气体传感器如电化学式、催化燃烧式、半导体式等相比具有应用广泛、使用寿命长、灵敏度高、稳定性好、适合气体多、性价比高、维护成本低、可在线分析等一系列优点,广泛应用于石油化工、冶金工业、工矿开采、大气污染检测、农业、医疗卫生等领域。   

二、红外气体传感器的工作原理

红外吸收光谱是一种分子吸收光谱。当样品受到频率连续变化的红外光照射时,分子吸收某些频率的辐射,并由其振动或转动运动引起偶极矩的净变化,产生分子振动和转动能级从基态到激发态的跃迁,使相应于这些吸收区域的透射光强度减弱。记录红外光的百分透射比与波数或波长关系曲线,就得到红外光谱。

当红外线波长与被测气体吸收谱线相吻合时,红外能量被吸收。红外光线穿过被测气体后的光强衰减满足朗伯.比尔( Lambert-Beer)定律。气体浓度越大,对光的衰减也越大。因此,可通过测量气体对红外光线的衰减来测量气体浓度。为了保证数呈线性关系,当待测组分浓度大时,分析器的测量气室较短,最短的为0.3mm;当浓度低时,测量气室较长,最长的大于200mm。经吸收后剩余的光能用红外检测器检测。

分光是指用棱镜或光栅进行分光,把光源发出的红外线分成完全对称的两束光:参考光束与样品光束。它们经半圆形调制镜调制,交替地进入单色仪的狭缝,通过棱镜或光栅分光后由热电偶检测两束光的强度差。当样品光束的光路中没有样品吸收时,热电偶不输出信号。一旦放入测试样品,样品吸收红外光,两束光有强度差产生,热电偶便有约10Hz的信号输出,经过放大后输至机,调节参考光束光路上的光楔,使两束光的强度重新达到平衡,由笔的记录位萱直接指出了某一波长的样品透射率,波数的连续变化就自动记录了样品的红外吸收光谱或透射光谱。基于这样原理的气体传感器就称为分光红外气体传感器。

随着红外光学材料及微电子封装技术的发展,红外探测器在其封装上固定安装有针对不同气体的窄带干涉滤光片。通过使用固定有不同波长滤光片的红外传感器,可以实现对不同气体的测量。

窄带干涉滤光片

热释电材料是一种具有自发极化的电介质,它的自发极化强度随温度变化,可用热释电系数p来描述,p=dPldT(P为极化强度,F为温度)。在恒定温度下,材料的自发极化被体内的电荷和表面吸附电荷所中和。如果把热释电材料做成表面垂直于极化方向的平行薄片,当红外辐射入射到薄片表面时,薄片因吸收辐射而发生温度变化,引起极化强度的变化。而中和电荷由于材料的电阻率高跟不上这一变化,其结果是薄片的两表面之间出现瞬态电压。若有外电阻跨接在两表面之间,电荷就通过外电路释放出来。电流的大小除与热释电系数成正比外,还与薄片的温度变化率成正比,可用来测量入射辐射的强弱。

热释电型红外探测器都是用硫酸三甘酞(TGS)和钽酸锂(LiTa03)等优质热释电材料(p的数量级为10-8C/Kcm2)的小薄片作为响应元,加上支架、管壳和窗口等构成。它在室温工作时,对波长没有选择性。

热电堆的结构辐射接收面分为若干块,每块接一个热电偶,把它们串联起来,就构成热电堆。按用途不同,实用的热电堆可以制成细丝型和薄膜型,亦可制成多通道型和阵列型器件。带红外带通滤波器的传感器应用于红外吸收气体探测。

热释电和热电堆型红外探测器的根本区别在于,后者利用响应元的温度升高值来测量红外辐射,响应时间取决于新的平衡温度的建立过程,时间比较长,不能测量快速变化的辐射信号。而热释电型探测器所利用的是温度变化率,因而能探测快速变化的辐射信号。这种探测器在室温工作时的探测率可达D::1~2x109cm.Hz/W。20世纪70年代中期以来,这种探测器在实验室的光谱测量中逐步取代温差电型探测器和气动型探测器。

利用这些窗口滤波红外探测器,不用进行分光,从而可以直接测量对应滤波片波段也即相应气体吸收波段的红外光强度,这样的气体传感器称为非分光红外(NDIR)气体传感器。   

三、非分光红外(NDIR)气体传感器核心技术详解

NDIR红外气体分析仪作为一种快速、准确的气体分析技术,特别连续污染物监测系统(CEMS)以及机动车尾气检测应用中十分普遍。可以实现SO2、NO、CO2、CO、CH4、N2O等气体的实时测量。

国内NDIR气体分析仪的主要厂家大都采用国际上八十年代初的红外气体分析方法,如采用镍锘丝作为红外光源、采用电机机械调制红外光、采用薄膜电容微音器或InSb等作为传感器等。由于采用电机机械调制,仪器功耗大,且稳定性差,仪器造价也很高。同时采用薄膜电容微音器作为传感使得仪器对震动十分敏感,因此不适合便携测量。

随着红外光源、传感器及电子技术的发展,NDIR红外气体传感器在国外得到了迅速的发展。主要表现在无机械调制装置,采用新型红外传感器及电调制光源,在仪器电路上采用了低功耗嵌入式系统,使得仪器在体积、功耗、性能、价格上具有以往仪器无法比拟的优势。   

NDIR气体分析基本机理:

红外光通过待测气体时,这些气体分子对特定波长的红外光有吸收,其吸收关系服从朗伯--比尔(Lambert-Beer)吸收定律。设入射光是平行光,其强度为I0,出射光的强度为I,气体介质的厚度为L。当由气体介质中的分子数dN的吸收所造成的光强减弱为dI时,根据朗伯--比尔吸收定律: dI/I=-KdN,式中K为比例常数。经积分得:lnI=-KN+α(1),式中:N为吸收气体介质的分子总数;α为积分常数。显然有N∝cl,c为气体浓度。则式(1)可写成:   

I=exp(α)exp(-KN)=exp(α)exp(-μcL)=I0exp(-μcL) (2)

式(2)表明,光强在气体介质中随浓度c及厚度L按指数规律衰减。吸收系数取决于气体特性,各种气体的吸收系数μ互不相同。对同一气体,μ则随入射波长而变。若吸收介质中含i种吸收气体,则式(2)应改为:I=I0exp(-l∑μi ci) (3)因此对于多种混合气体,为了分析特定组分,应该在传感器或红外光源前安装一个适合分析气体吸收波长的窄带滤光片,使传感器的信号变化只反映被测气体浓度变化。以CO2分析为例,红外光源发射出1-20um的红外光,通过一定长度的气室吸收后,经过一个4.26μm波长的窄带滤光片后,由红外传感器监测透过4.26um波长红外光的强度,以此表示CO2气体的浓度,

电调制NDIR红外气体传感器采用了以下关键技术:

1.红外光源及其调制

pulsIR,reflectIR等新型电调制红外光源等,升降温速度很快.红外光源发射窗口上安装有透明窗,一方面可以保证发射的红外光波长在特定范围内,适合于对常规的气体如CO2、CO、CH4、NO、SO2等气体进行测量。此外也可以阻止外界环境对光源温度的影响。

2.镀膜气室

采用气室与外支撑分离的结构,安装时只需将气室固定安装在支撑结构的中心即可。此种结构设计保证了该部件易于装卸﹑更换;同时由于与外支撑分离,进一步减小了外界条件的影响,使仪器能适应复杂环境下工作。此外原来一些需要较长气室的传感器,采用以往方法加工镀膜工艺十分困难,采用此法后将十分容易,成本也将大大降低。传统气室采用了与外支撑一体化设计,具有制造容易﹑安装方便等优点,但受外界温度波动影响较大;其次,由于被分析气体成分复杂,具有一定的腐蚀性,如SO2﹑NOx等,长时间使用后气室极易被污染,直接影响测量精度。

3.红外探测器

红外探测器,NDIR气体传感器的核心部件,测量精度很大程度取决于传感器的性能高低。本研究采用高灵敏度红外传感器,例如TPS2534Gx/Gy,TPS4339Gw/Gx/Gy/Gz,在其封装上固定安装有针对不同气体的窄带干涉滤光片,可以实现对不同气体的测量。为了确保红外探测器得到较强的稳定信号,可以设计一种红外探测器定向轴,即使在前置放大板上焊接的红外探测器位置有一定的偏差,本传感器也可确保与红外光源和气室位于同一光学中心轴上。   

红外探测器接收红外光产生的信号十分微弱,极易受外界的干扰,因此稳定可靠的前置放大电路是关键,最好采用高精密、低飘移的模拟放大电路,并采用窄带滤波电路。前置放大电路具有精度高、漂移小、响应快的特点。前置放大出来的信号通过二级放大电路,直接输出一个与气体浓度对应信号,并送入测控系统,通过非线性校正和补偿后得到气体浓度。

4、传感器测控系统

为了实现NDIR气体传感器的测量、控制以及自动标定等功能,需要一个合适的微控制器来管理传感器。传感器测控系统通过采集红外输出信号及测量标准气体曲线,采用非线性校正算法可以直接得到测量气体的浓度。

通过采用以上技术,NDIR红外气体传感器的结构比以往仪器将大大简化,仪器功耗也大幅度降低(只有以往的1/4),传感器的成本也不到以往技术的1/4。此类传感器可以实现模块化和标准化,因此更加适合在我国广泛使用。

文章转载自:传感器专家网 https://www.sensorexpert.com.cn/article/6794.html

开讲了|Part3分解:气体传感器系列之红外气体传感器知识详解

>> 气体传感器门类众多,本号每日一篇详细介绍多种常见的不同工作原理的气体传感器相关知识。

分解

红外气体传感器知识

03

红外气体传感器

定义: 红外气体传感器是一种基于不同气体分子的近红外光谱选择吸收特性,利用气体浓度与吸收强度关系(朗伯-比尔Lambert-Beer定律)鉴别气体组分并确定其浓度的气体传感装置。

原理:由不同原子构成的分子会有独特的振动、转动频率,当其受到相同频率的红外线照射时,就会发生红外吸收,从而引起红外光强的变化,通过测量红外线强度的变化就可以测得气体浓度。

需要说明的是,振动、转动是两种不同的运动形态,这两种运动形态会对应不同的红外吸收峰,振动和转动本身也有多样性,因此一般情况下一种气体分子会有多个红外吸收峰。

根据单一的红外吸收峰位置只能判定气体分子中有什么基团,精确判定气体种类需要看气体在中红外区所有的吸收峰位置即气体的红外吸收指纹。

在已知环境条件下,根据单一红外吸收峰的位置可以大致判定气体的种类。由于在零下273摄氏度即绝对零度以上的一切物质都会产生红外幅射,红外幅射与温度正相关,因此,同催化元件一样,为消除环境温度变化引起的红外幅射的变化,红外气体传感器中会由一对红外探测器构成。

一个完整的红外气体传感器由红外光源、光学腔体、红外探测器和信号调理电路构成。

红外吸收原理只能测不同原子构成的分子。由于同一分子内部运动的多样性使其具有多种不同的振动频率和转动频率,因此,对红外吸收的分子会有不同个吸收峰。另外,具有相同化学键的分子(如水和酒精分子中的氢氧键)会有相近的吸收峰,干扰由此产生。

为什么红外气体传感器不能测量氧气、氢气、氮气等由相同原子构成的气体分子?

举例: 月亮和地球、地球和太阳靠万有引力连接,分子内部原子间靠化学键连接。如果二者是理想球体而且没有其它万有引力干扰则地球轨道将是圆的,实际上上面两个条件都不成立,因此其轨道是椭圆的,也就是地球和太阳之间的距离不停地在短半径和长半径之间转换,即振动,只是振动周期长达一年,在这个过程中,地球处于短半径点和长半径点时,它和太阳之间的引力是不同的,即能量级别不同。

同理,在分子内部原子间靠化学键连接,原子间的空间距离、角度、方向由于电子分布的不均衡而不停发生变化,即振动、转动,而且不同的分子会有独特的振动、转动频率,当遇到相同频率的红外线照射时会产生谐振、原子间距离和电子分布发生变化即偶极距发生变化,红外吸收就是这样产生的(紫外吸收同理)。

以上内容中包含红外吸收的两个基本条件:谐振、偶极距变化,这两个条件同时满足才能产生红外吸收。

氧气、氢气、氮气等由同一种原子构成的分子为什么没有红外吸收峰?两个基本条件:一是气体分子振动频率与照射的红外线频率相同,二是偶极距变化。不难理解,第一个条件容易满足,第二个条件无可能性。

相同原子构成的分子正负电荷中心完全重叠,即偶极距为零,其结果是电子在分子中的分布是均衡的,以红外光本身的低能量密度特征,其照射不会改变这种均衡,更不可能使分子电离,即不会导致能量变化。而不同原子构成的分子:以水(蒸气)分子为例,分子中电子的分布偏向氧这端,即微观上水分子中氢那一端呈正电性,氧那一端呈负电性,正负电荷中心是不重叠的,即偶极矩不为零,这是因为氧吸引电子的能力比氢强的缘故。

在与水分子振动、转动频率相同的红外线照射时,会使电子在水分子中的分布更偏向氧一端,导致氢和氧的平均距离变短,即偶极距变短,能量变高,即水分子受到红外照射时会从低能级跃迁到高能级,红外吸收就是这样产生的。

可以简单理解 :红外线与相同原子组成的分子相遇时,由于相同原子组成的分子是理想的弹性球体,两者的相互作用是完全弹性碰撞,只有能量交换,没有能量转移。不同原子组成的分子与红外线相互作用则有能量转移。因此,红外吸收原理不能测相同原子构成的分子。

延伸 :

非色散红外吸收气体传感器

非色散:白光通过三棱镜会被分为七色光即赤、橙、黄、绿、青、蓝、紫,这个三棱镜就是一个分光系统,能把七色光分开。

有分光系统的光学系统即色散型光学系统,无分光系统的光学系统即非色散性。

非色散系统简易、可靠、小巧、廉价。平时我们感受到的白光、紫外、紅外光都是不同频率、波长混合成的光,而单频率、单波长的光即单色光。

前面讲到只有红外线的频率和气体分子振动、转动频率相同时才会产生红外吸收,理论上在设计气体传感器时,我们希望用单色光去照射气体或者照射后我们用设置光栅(滤光片)的办法获得单色光。

非色散红外气体传感器通常由光源、光学腔体、滤光片(光栅)、探测器和信号调理电路构成,在传感器中滤光片和探测器是一体的。

红外气体传感器优点:

1、除了相同原子組成的气体,所有气体都可以测。

2、全量程。

3、传感过程本身不会干扰传感。

红外气体传感器缺点:

1、昂贵。红外气体传感器本质上是红外幅射导致探测器温度变化进而是电性能变化的温度传感器,传感过程复杂。

要求系统有如下特征:

光源必须有稳定的红外幅射;光学腔体物理化学性质稳定;滤光片及红外探测器稳定。

这些问题,合理的工艺技术本身能较好的解决,但是制造成本高,导致价格昂贵。

2、选择性弱。在普通的以宽频红外光源加滤光片加探测器设计中,滤光片本身不能实现理想的选择性滤光,因此干扰尤其是水的干扰一直存在。

选择性的问题深层原因在于很多不同的气体分子会有相同的化学键,即有相近甚至重叠的红外吸收。

3、粉尘、背景幅射、强吸附及气、液、固易发生转换的检测对象都会对检测结果造成影响。

PS常识补充:

近红外波长:0.7um~2.0um;

中红外波长:2.0um~15um。

气体吸收峰:每一种气体的吸收峰不止一个,如:甲烷在近红外1.3um,1.65um;中红外2.6um、3.31um,3.43um,6.5um等处都有吸收峰。

激光光源:最接近单色光的光源。

我们大概容易想到,同一气体分子的振动、转动的多样性导致其有多个吸收峰;含有相同化学键的分子会有相近的吸收峰。因此红外传感器的技术发展路径很清楚,单色光源、集成化、微型化、低功耗。

目前最大的问题:近红外区只有个别波长有较廉价的激光器做单色光,而且在近红外区气体吸收较弱。在气体对红外的强吸收区中红外区,激光器制造工艺复杂,激光材料、理论及器件未有商业价值突破,导致中红外激光器极昂贵,这严重限制了红外气体传感器在复杂环境下的应用。

在常见的气体中目前二氧化碳是红外原理最强的应用,也是基于节能的最具商业前景的应用,其次是甲烷。

炜盛 MH-Z19B红外CO2传感器

红外气体传感器与其它类别气体传感器如半导体式、电化学式、催化燃烧式等相比具有应用广泛、使用寿命长、灵敏度高、稳定性好、适合气体多、性价比高等一系列优点。其广泛应用于石油化工、冶金工业、工矿开采、大气污染检测、农业、医疗卫生等领域。

气体传感器门类众多,明日详细介绍——催化燃烧式气体传感器 相关知识,敬请期待!

相关问答

【电化学 气体传感器 和红外气体传感器的区别】作业帮

[最佳回答]电化学气体传感器是利用气体在电极上的电化学反应(包括氧化和还原)时,检测电极上的电压或者电流来感知气体的种类和浓度(分压).特征是有电解质(有液...

红外 传感器 是什么?

红外线传感器是利用红外线来进行数据处理的一种传感器,有灵敏度高等优点,红外线传感器可以控制驱动装置的运行。红外线传感器常用于无接触温度测量,气体成分分...

红外 传感器 有哪些作用

[最佳回答]红外传感器的作用是监测车门外的动态,实现车辆测速、检测、非接触测温、气体成分分析和无损检测的研究。它广泛应用于医学、军事、空间技术和环境工...

红外 传感器 如何检测有毒 气体 - 誉头95 的回答 - 懂得

看有毒气体对红外线的吸收程度。红外光学型是利用红外传感器通过红外线光源的吸收原理来检测现场环境的碳氢类可燃气体您可以上国瑞仪器官网看看...

跪求解答!!常用的 气体传感器 都有哪些?

[回答]气体传感器”包括:半导体气体传感器、电化学气体传感器、催化燃烧式气体传感器、热导式气体传感器、红外线气体传感器、固体电解质气体传感器等。相...

光离子化传感器属于 气体传感器 嘛?

气体传感器是一种检测装置,能感受到被检测气体的信息,并能将检测到的信息按照一定的规律变换成电信号或者其他所需形式的信号输出,以满足信息的传输、处理、存...

红外线 光电检测元件有哪些?

1、红外线传感器是利用红外线的物理性质来进行测量的传感器。红外线又称红外光,它具有反射、折射、散射、干涉、吸收等性质。任何物质,只要它本身具有一定的温...

电化学 气体传感器 和红外气体传感器的区别?

[回答]电化学气体传感器是利用气体在电极上的电化学反应(包括氧化和还原)时,检测电极上的电压或者电流来感知气体的种类和浓度(分压)。特征是有电解质(有...

红外 传感器 的工作原理是什么? - 懂得

1、红外线传感器是利用红外线的物理性质来进行测量的传感器。红外线又称红外光,它具有反射、折射、散射、干涉、吸收等性质。任何物质,只要它本身具...

常见的 气体传感器 分类有哪些?_其他问答_系统粉

气体传感器的分类:1,最早、最成熟、最便宜的是半导体气体传感器;2,电化学气体传感器,精度高,选择性较好,价格贵,一般检测毒性气体如一氧化碳、H2S、...

展开全部内容