上海羊羽卓进出口贸易有限公司

什么是影像传感器 一文读懂图像传感器(建议收藏)

发布时间:2025-01-19 16:01:52

一文读懂图像传感器(建议收藏)

图像传感器是各种工业及监控用相机、便携式录放机、数码相机,扫描仪等的核心部件。目前,这个快速增长的市场现在已经延伸到了玩具、手机、PDA、汽车和生物等领域。

图像传感器

图像传感器定义及种类

图像传感器应用

成像物镜将外界照明光照射下的(或自身发光的)景物成像在物镜的像面上,形成二维空间的光强分布(光学图像)。能够将二维光强分布的光学图像转变成一维时序电信号的传感器称为图像传感器。图像传感器,是组成数字摄像头的重要组成部分。

根据元件的不同,图像传感器通常可分为CCD(Charge-Coupled Device,电荷耦合器件)和CMOS(Complementary Metal-Oxide Semiconductor,金属氧化物半导体元件)两大类。

除以上两大常用类型外,还有一种CIS(Contact Image Sensor的缩写,接触式图像传感器),一般用在扫描仪中。由于是接触式扫描(必须与原稿保持很近的距离),只能使用LED光源,其景深、分辨率以及色彩表现目前都赶不上CCD感光器件,也不能用于扫描透射片。

接触式CIS

随着上世纪70年代和80年代固态成像应用的飞速发展,CCD技术和制造加工在光学特性和成像质量方面得到了最优化。在上世纪末的25年里,CCD技术一直统领着图像传感器件的潮流,它是能集成在一块很小的芯片上的高分辨率和高质量图像传感器。

而 CMOS图像传感器近年得到迅速发展,大有后来居上之势。CMOS在中端、低端应用领域提供了可以与CCD相媲美的性能,而在价格方面确实明显占有优势,随着技术的发展,CMOS在高端应用领域也将占据一席之地。

图像传感器的工作原理

图像传感器的工作原理

图像传感器是一种半导体装置,能够把光学影像转化为数字信号。传感器上植入的微小光敏物质称作像素。一块传感器上包含的像素数越多,其提供的画面分辨率也就越高。它的作用就像胶片一样,但它是把图像像素转换成数字信号。

CCD及CMOS的发展历史和特点

CCD是在1969年由美国贝尔实验室(Bell Labs)的维拉•波义耳(Willard S. Boyle)和乔治•史密斯(George E. Smith)所发明。

贝尔实验室

当时贝尔实验室正在发展影像电话和半导体气泡式内存。将这两种新技术结合起来后,波义耳和史密斯得出一种装置,他们命名为“电荷‘气泡’元件”(Charge "Bubble" Devices)。

这种装置的特性就是它能沿着一片半导体的表面传递电荷,便尝试用来做为记忆装置,当时只能从暂存器用“注入”电荷的方式输入记忆。但随即发现光电效应能使此种元件表面产生电荷,而组成数位影像。

到了70年代,贝尔实验室的研究员已经能用简单的线性装置捕捉影像,CCD就此诞生,CCD目前仍然广泛的应用在数码相机以及天文学等领域里。

我们都知道CCD是一种数码时代中代替传统胶片的介质,其工作原理也是借助着最初胶片上的化学物质对光的感应原理而演变过来的。

它使用一种高感光度的半导体材料制成,能把光线转变成电荷,通过模数转换器芯片转换成数字信号,数字信号经过压缩以后由相机内部的闪速存储器或内置硬盘卡保存,因而可以轻而易举地把数据传输给计算机,并借助于计算机的处理手段,根据需要来修改图像。

CCD由许多感光单位组成,通常以百万像素为单位。当CCD表面受到光线照射时,每个感光单位会将电荷反映在组件上,所有的感光单位所产生的信号加在一起,就构成了一幅完整的画面。

CCD的比较显著特点是:

1.技术成熟

2.成像质量高

3.灵敏度高,噪声低,动态范围大;

4.响应速度快,有自扫描功能,图像畸变小,无残像;

5.应用超大规模集成电路工艺技术生产,像素集成度高,尺寸精确。

评价一个CCD传感器好坏的指标有很多,例如像素数、CCD尺寸、信噪比等等。其中像素数以及CCD的尺寸是最重要的指标。像素数是指CCD上感光元件的数量。

我们可以把我们所拍摄到的画面理解为由很多个小的点组成,每个点就是一个像素。显然,像素数越多,画面就会越清晰,如果CCD没有足够的像素的话,拍摄出来的画面的清晰度就会大受影响。

因此,CCD的像素数量应该越多越好。但是为了得到更好的画质而增加了CCD的像素数后又必定会导致一个问题,那就是CCD制造成本的增加以及成品率下降。

所以针对成本等一系列的问题,一种成本更低、功耗更低以及高整合度的CMOS传感器 横空出世了。

CMOS本是计算机系统内一种重要的芯片,保存了系统引导最基本的资料。

CMOS

CMOS的制造技术和一般计算机芯片没什么差别,主要是利用硅和锗这两种元素所做成的半导体,使其在CMOS上共存着带负电的N极和带正电的P极的半导体,这两个一正一负互补效应所产生的电流即可被处理芯片纪录和转换成影像。后来发现CMOS经过加工也可以作为数码摄影中的图像传感器。

CMOS

CMOS图像传感器是一种典型的固体成像传感器,与CCD有着共同的历史渊源。CMOS图像传感器通常由像敏单元阵列、行驱动器、列驱动器、时序控制逻辑、AD转换器、数据总线输出接口、控制接口等几部分组成,这几部分通常都被集成在同一块硅片上。其工作过程一般可分为复位、光电转换、积分、读出几部分。

CMOS的光电信息转换功能与CCD的基本相似,区别就在于这两种传感器的光电转换后信息传送的方式不同。

CMOS构成

CMOS具有读取信息的方式简单、输出信息速率快、耗电省(仅为CCD芯片的1/10左右)、体积小、重量轻、集成度高、价格低等特点。

正是考虑到CMOS传感器的制作成本以及成品率都要高于CCD传感器,所以几个知名厂商自2000起就开始加大对CMOS这种传感器的研发工作,目前CMOS的成长率已经达到了几倍于CCD的水平。

我们可以看到,即使在早期尼康公司的数码单反产品中还会有一些型号的相机使用CCD传感器,但是无论是尼康、索尼还是佳能在近几年所推出的数码相机里,我们基本已经很难再看到CCD的踪影了。

虽然使用CMOS传感器会节约相机的成本,但是成像质量对于相机来说仍然是最重要的,CMOS相比起CCD来说最大的致命伤就是画质,这是因为早期的CMOS有个明显的缺点,就是在电流变化时频率变快,因此不可避免的会产生热量,最终造成画面出现杂点影响成像质量。

如果拿CCD和CMOS这两种传感器来比较的话,CCD这种传感器的最大的优点在于成像质量高,而CMOS最大的优点就在于成本低便于批量生产,而随着CMOS的缺点在不断的被完善。

目前一些中画幅数码相机或数码后背仍然在使用CCD传感器,这是因为不同产品对画质有着不同的要求,所以那些中画幅的数码产品也的价格也往往会高出普通数码相机许多。

因此,可以说将来的相机市场的主要发展方向仍然会是以CMOS作为核心,并在这个基础上不断提高CMOS的分辨率以及灵敏度等等。

工业相机

时代在进步,节约成本是每个商家都在坚持的经商法则,CCD的未来不一定在相机市场里,在其他领域,CCD也会凭借着自身的优势而被广泛的使用。

科技不断发展,我相信在未来的某一天,一定会有更多种类的传感器出现,这也只是时间的问题,到那时我们回望过去,看看我们曾经经历过的胶片时代、CCD时代和CMOS时代,一定会由衷的感叹科技日新月异的飞速发展。

CCD 与 CMOS 的比较

1、成像过程

CCD 和 CMOS 使用相同的光敏材料,因而受光后产生电子的基本原理相同,但是读取过程不同:CCD 是在同步信号和时钟信号的配合下以帧或行的方式转移,整个电路非常复杂,读出速率慢;CMOS 则以类似 DRAM的方式读出信号,电路简单,读出速率高。

2、集成度

采用特殊技术的CCD读出电路比较复杂,很难将A/D转换、信号处理、自动增益控制、精密放大和存储功能集成到一块芯片上,一般需要 3~8 个芯片组合实现,同时还需要一个多通道非标准供电电压。

借助于大规模集成制造工艺,CMOS图像传感器能非常容易地把上述功能集成到单一芯片上,多数CMOS图像传感器同时具有模拟和数字输出信号。

3、电源、功耗和体积

CCD 需多种电源供电,功耗较大,体积也比较大。CMOS 只需一个单电源(3V~5 V)供电,其功耗相当于 CCD 的1/10,高度集成CMOS 芯片可以做的相当小。

4、性能指标

CCD 技术已经相当成熟,而 CMOS 正处于蓬勃发展时期,虽然目前高端CMOS图像质量暂时不如CCD,但有些指标(如传输速率等方面)已超过CCD。由于CMOS具有诸多优点,国内外许多机构已经应用CMOS图像传感器开发出众多产品。

CCD与CMOS图像传感器的六大硬件技术指标

有时大家可能有这样的疑问,同样是高清网络摄像机为什么图像效果会有差异呢?使用同样的配件,为什么晚上的效果也不同呢?其实这是与我们使用的sensor(即图像传感器)的硬件技术指标相关的,不管是CCD还是CMOS图像传感器,主要有“像素、靶面尺寸、感光度、电子快门、帧率、信噪比”这六大硬件技术指标。

像素:

传感器上有许多感光单元,它们可以将光线转换成电荷,从而形成对应于景物的电子图像。而在传感器中,每一个感光单元对应一个像素(Pixels),像素越多,代表着它能够感测到更多的物体细节,从而图像就越清晰,像素越高,意味着成像效果越清晰。

像素

关联一下我们中维世纪的产品:100W网络摄像机分辨率是1280X720,两个值相乘得出的就是像素值,就是近100万个像素点,130W的分辨率是1280X960,像素值就是近130万个像素点。从图像效果上看,130W的效果比100W的要好一些。

靶面尺寸:

图像传感器感光部分的大小,一般用英寸来表示。和电视机一样,通常这个数据指的是这个图像传感器的对角线长度,如 常见的有1/3英寸,靶面越大,意味着通光量越好,而靶面越小则比较容易获得更大的景深。

比如1/2英寸可以有比较大的通光量,而1/4英寸可以比较容易获得较大的景深。”关联一下我们中维世纪的产品:100W产品是1/4英寸,130W是1/3英寸,200W是1/2.7英寸,大家从画面上就能感知到上面提到的靶面尺寸的不同带来的图像画质的变化。

感光度:

即是通过CCD或CMOS以及相关的电子线路感应入射光线的强弱。感光度越高,感光面对光的敏感度就越强,快门速度就越高,这在拍摄运动车辆,夜间监控的时候尤其显得重要。

这就是解释了为什么不同的摄像机夜视会有很大差别,感光度的单位是V/LUX-SEC,V(伏)就是我们通常说的电压的单位,LUX-SEC:是光强弱的单位,这个比值越大,夜视效果越好。

电子快门:

是比照照相机的机械快门功能提出的一个术语。其控制图像传感器的感光时间,由于图像传感器的感光值就是信号电荷的积累,感光越长,信号电荷积累时间也越长,输出信号电流的幅值也越大。电子快门越快,感光度越低,适合在强光下拍摄。

帧率:

既指单位时间所记录或者播放的图片的数量。连续播放一系列图片就会产生动画效果,根据人类的视觉系统,当图片的播放速度大于15幅/秒(即15帧)的时候, 人眼就基本看不出来图片的跳跃;在达到24幅/s~30幅/s(即24帧到30帧)之间时就已经基本觉察不到闪烁现象了。

每秒的帧数(fps)或者说帧率表示图形传感器在处理场时每秒钟能够更新的次数。高的帧率可以得到更流畅、更逼真的视觉体验。

信噪比:

是信号电压对于噪声电压的比值,信噪比的单位用dB来表示。一般摄像机给出的信噪比值均是AGC(自动增益控制)关闭时的值,因为当AGC接通时,会对小信号进行提升,使得噪声电平也相应提高。

信噪比的典型值为45~55dB,若为50dB,则图像有少量噪声,但图像质量良好;若为60dB,则图像质量优良,不出现噪声,信噪比越大说明对噪声的控制越好。这个参数关系的图像中噪点的数量,信噪比越高,给人感觉画面越干净,夜视的画面中点状的噪点就越少。

结语:

目前,CCD在性能方面还仍然优于CMOS。不过,随着CMOS图像传感器技术的不断进步,在其本身具备的集成性、低功耗、低成本的优势基础上,噪声与敏感度方面有了很大的提升,与CCD传感器差距不断缩小。甚至有些业内人士认为,未来的传感器市场,应是CMOS的天下。那么,到底哪一种传感器更适合工业相机市场呢?或者哪一种传感器更适应以后的需求?

对于以上问题,答案是显而易见的:在选择某种芯片时有很多需要权衡考虑的问题。

CCD和CMOS图像传感器各有利弊,在整个图像传感器市场上它们既是一种相互竞争又是一种相互补充的关系,而有些时候,两种传感器之间是互补的,可以适用在不同的应用场合。不论是哪种传感器比较强大,他们技术的进步无疑都将极大推动图像传感器市场及机器视觉行业的发展。

来源:传感器技术

(本文为网络摘录或转载,版权归原作者或刊登媒体所有。如涉及作品版权问题,请联系我们处理。)

CCD图像传感器——颠覆人类记录影像的方式

维纳德 • 波利(左)和乔治 • 史密斯(右)在1969年发明了CCD技术

来源:文献[1]

2009年,维纳德 • 波利(Willard S. Boyle)和乔治 • 史密斯(George E. Smith)因为发明CCD(Charge-coupled Device,电荷耦合元件,或称为CCD图像传感器)而获得当年的诺贝尔物理学奖。

诺贝尔奖委员会主席约瑟夫·诺德格伦(Joseph Nordgren)在宣布该奖项的新闻发布会上说:“当今社会的记录影像的方式完全基于CCD的研究。” “这项研究的实际意义是巨大的……它改变了我们的生活,不仅在科学领域,而且在整个社会领域。”

胶片时代

在1975年数码相机发明以前,人们记录影像的方式是使用胶片。它的工作过程可以概述为:光线经过照相机镜头,然后由快门的速度来决定曝光量的多少。光线使胶片上的银盐产生化学反应,最后在胶片上生成影像的潜影。经过暗房里的冲洗形成影像并制成底片。利用调配将底片显影最终印出。

胶片摄影需要经过复杂的处理才能得到影像

[图片来源自网络]

CCD的发明

1969年10月,史密斯和波利在贝尔实验室吃午餐时,讨论产生了灵感。午餐后继续探讨,当天就构想出了CCD这个无处不在的成像发明。不过,从造出样机到研制出科学家和摄影师都可以使用的实用技术,这条路漫长而艰难。尽管CCD后来主宰了天文学领域,但它在刚发明时分辨率非常低,根本派不上实际用场。当时CCD的信噪比很差,不大容易看得出它是否会有远大的前程。

第一个CCD器件

来源:文献[4]

第一个CCD集成器件

来源:文献[4]

早期的线性成像CCD

来源:文献[4]

在接下来的时间里,成百上千的科学家和工程师努力奋斗,逐步将CCD推向实用化,包括美国的仙童(Fairchild)、柯达泰克(Tektronix)和德州仪器(Texas Instruments,TI),以及日本的夏普(Sharp)、索尼(SONY)、东芝(Toshiba)和日本电气(NEC)等公司都作出了许多贡献。航天、科学和消费等方面的应用,都得益于为解决CCD问题而从不同渠道投入的经费,但是问题还是很棘手,那是一条非常艰苦的发展之路。

CCD的原理

CCD是一种半导体器件,能够把光学影像转化为数字信号。 CCD上植入的微小光敏物质称作像素(Pixel)。像素数越高,面积越大,成像质量就越高越清晰。CCD上有许多排列整齐的电容,能感应光线、储存信号并将影像转变成数字信号。经由外部电路的控制,每个小电容能将其所带的电荷转给相邻的图像处理器来形成图像。

MOS电容器是构成CCD的最基本单元,它是金属—氧化物—半导体(MOS)器件中结构最为简单的。

MOS电容器

来源:文献[4]

CCD的基本工作过程主要是信号电荷的产生、存储、转移和检测:

(1)信号电荷的注入(产生):在CCD中,电荷注入的方式可分为光注入和电注入两类。当光照射到CCD硅片上时,在栅极附近的半导体体内产生电子-空穴对,多数载流子被栅极电压排斥,少数载流子则被收集在势阱中形成信号电荷。

背照式光注入

来源:文献[8]

所谓电注入就是CCD通过输入结构对信号电压或电流进行采样,然后将信号电压或电流转换为信号电荷注入到相应的势阱中。电注入常用的有电流注入和电压注入两种方式。

电注入方式

来源:文献[8]

(2)信号电荷的存储:CCD工作过程的第二步是信号电荷的收集,就是将入射光子激励出的电荷收集起来成为信号电荷包的过程。

当向SiO表面的电极加正偏压时,P型硅衬底中形成耗尽区(势阱),耗尽区的深度随正偏压升高而加大。其中的少数载流子(电子)被吸收到最高正偏压电极下的区域内,形成电荷包(势阱)。对于N型硅衬底的CCD器件,电极加正偏压时,少数载流子为空穴。

电荷存储

来源:文献[8]

(3)信号电荷的传输(耦合):CCD工作过程的第三步是信号电荷包的转移,就是将所收集起来的电荷包从一个像元转移到下一个像元,直到全部电荷包输出完成的过程。

电荷转移

来源:文献[7]

三相CCD中电荷的转移方式

(a)初始状态;(b) 电荷由①电极向②电极转移;(c) 电荷在①、②电极下均匀分布;(d) 电荷继续由①电极向②电极转移;(e) 电荷完全转移到②电极;(f) 三相交叠脉冲

来源:文献[8]

(4)信号电荷的检测:CCD工作过程的第四步是电荷的检测,就是将转移到输出级的电荷转化为电流或者电压的过程。

其中电荷输出类型,主要有三种:1)电流输出;2)浮置栅放大器输出;3)浮置扩散放大器输出。

电荷检测电路

来源:文献[8]

CCD工作过程示意图

来源:文献[6]

CCD图像传感器是按一定规律排列的MOS(金属—氧化物—半导体)电容器组成的阵列。 在P型或N型硅衬底上生长一层很薄(约120nm)的二氧化硅,再在二氧化硅薄层上依次序沉积金属或掺杂多晶硅电极(栅极),形成规则的MOS电容器阵列,再加上两端的输入及输出二极管就构成了CCD芯片。

按照像素排列方式的不同,可以将CCD分为线阵和面阵两大类。

线阵CCD每次扫描一条线,为了得到整个二维图像的视频信号,就必须用扫描的方法实现。线阵CCD又分为单沟道线阵CCD和双沟道线阵CCD。

单沟道线阵CCD:转移次数多、效率低。只适用于像素单元较少的成像器件。

双沟道线阵CCD:转移次数减少一半,它的总转移效率也提高为原来的两倍。

线阵CCD

来源:文献[6]

面阵CCD:按照一定的方式将一维线阵CCD的光敏单元及移位寄作器排列成二维阵列。就可以构成二维面阵CCD。面阵CCD同时曝光整个图像。

帧转移面阵CCD——优点:电极结构简单,感光区面积可以很小。缺点:需要面积较大暂存区。

帧转移面阵CCD结构及工作过程

来源:文献[6]

隔列转移面阵CCD——优点:转移效率大大提高。缺点:结构较为复杂。

隔列转移面阵CCD结构及工作过程

来源:文献[6]

CCD功能示意图

来源:文献[7]

CCD芯片结构

图片来源自网络

CCD的发展

CCD的发明具有划时代的意义,它的出现使得人类捕捉信息达85%的眼睛这个重要器官得到了极大扩展与延申。

促进CCD快速发展主要有三个因素:首先,CCD的尺寸小,重量轻,消耗功率少,超低噪声,动态范围较大,线性良好,可靠,耐用。第二,这种器件在形状、快速、外形质量和成本方面能与真空管抗衡。第三,空间成像应用需要新的探测器。

20世纪70年代,美国贝尔实验室成功研制了世界上第一只CCD,它的诞生使成像、摄像等技术呈现一次飞跃。1973年,仙童公司把CCD技术应用于商业领域,制造出第一只商用CCD成像器件,这开辟了CCD在工业领域的道路。80年代后期,CCD在大多数视频应用中取代了电子管。进入90年代后,CCD应用于分辨成像,广泛应用于专业电子照相、空间探测、X射线成像及其他科研领域。

两种CCD产品

图片来源自网络

市场应用的结果证明CCD是科学领域的一项重大技术变革。它在被忽视数十年之后,能获得2009年的诺贝尔奖可谓实至名归。

变革不停

但是,科学技术的进步一刻也不曾停止。1998年,CMOS图像传感器(Complementary Metal-Oxide-Semiconductor Image Sensor,CIS)诞生了。CMOS的光电信息转换功能与CCD的基本相似,区别就在于这两种传感器的光电转换后信息传送的方式不同。CMOS具有读取信息的方式简单、输出信息速率快、耗电少(仅为CCD芯片的1/10左右)、体积小、重量轻、集成度高、价格低等特点。从2008年开始,各大厂商都开始逐渐把背照式CMOS使用在不同的数码相机产品上。从此,CMOS图像传感器迅速发展。

CMOS取代CCD

图片来源自网络

科技不断发展,相信在未来的某一天,一定会有更多种类的传感器出现,这也只是时间的问题,到那时我们回望过去,看看我们曾经经历过的胶片时代、CCD时代和CMOS时代,一定会由衷的感叹科技日新月异的飞速发展。

参考文献

https://www.nobelprize.org/prizes/physics/2009/summary/

张汝京. 半导体产业背后的故事[M]. 清华大学出版社, 2013.

董艺婷. 摄影技术的发展及对当代社会的作用研究[D].哈尔滨师范大学,2016.

Smith, G. E. (2009). "The invention and early history of the CCD." Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 607(1): 1-6.

https://www.microscopyu.com/digital-imaging/introduction-to-charge-coupled-devices-ccds

https://www.mega-9.com/tech/tech-45.html

https://specinstcameras.com/what-is-a-ccd/

王庆有. 图像传感器应用技术[M]. 电子工业出版社, 2019.

https://www.docin.com/p-505990925.html

http://dc.yesky.com/88/31913588all.shtml

转载内容仅代表作者观点

不代表中科院物理所立场

来源:中科院半导体所

编辑:荔枝果冻

相关问答

什么是 图片 传感器 ?

图片传感器是一种将光线转换为电信号的装置,也被称为图像感应器。它可以捕捉光线,将其转化为数字信号,并将其保存在相机或其他设备中。这种技术的核心是由数...

图像 传感器 什么是 图像 传感器 ?

图像传感器是利用光电器件的光电转换功能将感光面上的光像转换为与光像成相应比例关系的电信号。与光敏二极管,光敏三极管等“点”光源的光敏元件相比,图像传...

图像 传感器是 做什么的?

1:图像传感器的主要作用是将光学图像转换成电学信号并输出。图像传感器是一种特殊类型的半导体器件,由大量的光敏元件和信号电路组成,可以将入射的光线转化为...

摄像头和 传感器 的区别?

回答如下:摄像头和传感器是两种不同的设备,有以下区别:1.功能不同:摄像头主要用于捕捉图像和录制视频,可以用于拍照、拍摄视频、视频通话等;而传感器主要...

图像 传感器 和摄像头区别?

图像传感器和摄像头是数字图像处理领域中的两个重要组件,它们在图像获取和处理过程中扮演着不同的角色。下面是它们的区别:图像传感器:-图像传感器是指位于...

常见的 影像传感器 有哪些?

常见的影像传感器有CMOS,CCD,ECU等。固态影像传感器(solidstateimagesensors)技术起源于20世纪60年代末,它通过将光子转换为电荷并记录在存储介质中以实...

传感器 跟像素有什么区别?

传感器的像素是指物理像素,也就是说这个相机实际装了多少像素进去。有效像素是指拍摄时实际使用了多少像素。画质看有效像素。如果看机器的能力,看物理像素...

cmos图像 传感器 概念?

CMOS图像传感器是一种集成电路器件,用于将光信号转换为电信号,常用于数码相机、手机摄像头和监控摄像头等设备中。与传统的CCD图像传感器相比,CMOS图像传感器...

ccd图像 传感器是 一种 什么传感器 ?

电荷耦合器件图像传感器CCD(ChargeCoupledDevice),它使用一种高感光度的半导体材料制成,能把光线转变成电荷,通过模数转换器芯片转换成数字信号,数字信号...

行车记录仪内置的图像 传感器 有什么作用?

热敏型的。传感器是一种检测装置,能感受到被测量的信息,并能将感受到的信息,按一定规律变换成为电信号或其他所需形式的信息输出,以满足信息的传输、处理、存...

展开全部内容