上海羊羽卓进出口贸易有限公司

磁电式传感器 传感器+AI,融了7个亿,华为基恩士博世……都在搞AI传感器

发布时间:2024-10-07 02:10:54

传感器+AI,融了7个亿,华为基恩士博世……都在搞AI传感器

随着以ChatGPT为代表的AI大模型技术的迅猛发展,人工智能正在颠覆各行各业,并带来巨大的技术提升,对传感器技术来说,也是如此。

目前,从华为、博世、基恩士等巨头到初创传感器企业,均在探索人工智能技术在智能传感器中的应用。

传感器专家网

https://www.sensorexpert.com.cn

专注于传感器技术领域,致力于对全球前沿市场动态、技术趋势与产品选型进行专业垂直的服务,是国内领先的传感器产品查询与媒体信息服务平台。基于传感器产品与技术,对广大电子制造从业者与传感器制造者提供精准的匹配与对接

此前,来自以色列的初创企业Exodigo,宣布获得1.05亿美元(约合7.76亿人民币)的融资,本轮融资由风险投资机构Greenfield Partners和Zeev Ventures共同领投。

资料显示,Exodigo成立于2021年,短短两年就已获得三轮融资,融资金额超过1.3亿美元。

Exodigo为什么能获得资本青睐?

答案在于其传感器+AI的革命性探测技术。

▲来源:企查查

在城市中地下,各种天然气管道、自来水管、电缆以及其他可能导致泄漏、爆炸的埋藏障碍物密布,随着老化、年久失修,带来的安全风险剧增。

据Common Ground Alliance (CGA)测算,美国每年有数十万起因公用管线破损老化带来的事故,其损失超过了300亿美元。 Exodigo也曾估算,公共事业公司每年在不必要的重型设备挖掘和探测性钻探上的花费,也超过了1000亿美元。与此同时,建筑环境几乎占了全球碳排放量的一半,这也使得解决地下问题有了经济和环境的双重需求。

因此,实现精确的、无侵入式的地下探测,绘制出详细的地下地图,对城市地下管廊系统的维护非常重要。

传统的地下地图依靠单个传感器和视觉提示来推断位置和线路路径,常常需要对地面进行破坏,同时线路不够准确。

那么,Exodigo怎么做呢?

Exodigo使用多个传感器融合收集地球物理数据,并将信号与人工智能(AI)融合在一起,显着提高地图绘制的准确性和效率,从而减少不必要的挖掘以节省成本、降低损失。

据Exodigo声称,该方法通常比传统方式能够多发现20-30%的公用事业线路,并能够将初步挖掘和钻探减少多达90%, 因此施工人员只需要在必要时进行挖掘即可。

据官网介绍,Exodigo绘制地图主要有这些步骤:

数据采集

Exodigo 使用最先进的传感器进行扫描,涵盖多个物理领域。这种方法弥补了单个传感器类型的局限性,并确保检测到所有埋藏的资产(无论材料和属性如何)。平均每 0.4 英寸(1 厘米)扫描一次采样,捕获的数据量是传统定位仪的 1000 倍。

这些先进传感器包括了多频磁电式传感器、磁性梯度计、电性模拟器、多频多通道探地雷达等。

同时,Exodigo以纵横交错的蛇形路径模式扫描整个区域,而非传统的“遵循路线”方法从现有记录和视觉提示(如沙井或消防栓)开始推断位置,这种方法消除了扫描过程中的人为错误和偏见,并最大限度地提高了我们收集的数据的完整性。

多传感器融合

在信号中添加高分辨率图像,以检测地下公用设施(例如沙井、消防栓等)的任何地上指标。这种融合创建了一个同步的、基于地理定位的、多感知维度的数据堆栈,使我们的人工智能能够构建精确的地下 3D 模型。

基于人工智能驱动的地图创建

将数据上传到云端进行分析后,Exodigo 的自研算法会根据现场采样的数据对所有可能的情况进行物理模拟,以找到对整个区域中检测到的物体位置的最佳预测。

Exodigo指出,其AI算法在实时数据库上进行训练,数据库包含过去完成的来自全球各地的数十个项目的 TB 级数据 ,数据库随着新数据的添加而不断发展。

Exodigo通过多传感器融合才是采集到的数据量是庞大的,如何分析这么庞大的数据?

Exodigo给出的方法就是自动化和AI,通过AI技术Exodigo分析比传统方法多几个数量级的数据,以发现与周围环境具有不同特征的地理现象,在过去,训练有素的地球物理学家可能需要几个月的时间才能从单个站点扫描中手动查看大量数据,而我们的算法可以在数小时内处理这些数据。

并且,使用AI可以减少过程中的人为错误,特别是在保持重复性任务的规则应用和质量保证方面的一致性。

然而,虽然AI可以解决大多数物体检测问题,但Exodigo也特别提到,其团队中仍然包含多维地球物理专家和土木工程师, 他们会审查所有特殊情况,以保证每张地图的质量水平

可以看到,该革命性探测技术,基于多种先进传感器融合+AI技术,Exodigo成立的第二年,这项技术就荣获了《时代》杂志评选的2022年最佳创新之一,并入选“改变我们生活方式的200项发明”。

在示例方面,Exodigo给出了多个项目实用案例,譬如美国国家电网计划在纽约鹿特丹建设一个变电站,但缺乏选址地方的地下管廊布局情况。

Exodigo 使用其推车平台通过多个传感器、摄像头图像和厘米级精度的 RTK GPS 扫描该区域,每英亩收集超过 500 GB 的数据,通过AI计算后生成3D可视化地下地图,避免了项目后期代价高昂的延误。

美国国家电网土木建设总监Mike Roberts评价“Exodigo在鹿特丹试点项目中取得了非常有希望的结果。这项技术看起来改变了我们的游戏规则,从项目开始、规划、设计和工程,一直到施工,这个领域都至关重要。该技术提供的能见度水平提高就像第一次戴上处方眼镜,对以前有限和模糊的东西获得清晰的视野。”

华为、博世、基恩士……头部企业探索传感器+人工智能

传感器+AI,Exodigo这家初创地下空间探测企业用其创新的技术做了示范,凭借该技术取得的成功,获得了投资者的青睐。

作为市场和新技术的引领者,越来越来多的头部企业在探索传感器技术中人工智能的应用。

譬如在今年5月份,华为在夏季全场景发布会中,推出AI 辅助康养传感器, 瞄准智能家居中的智慧康养赛道。

AI 辅助康养传感器使用毫米波雷达技术,实现起居检测场景健康关怀,传感器支持跌倒、坠床、睡眠等事件检测,并且支持分级告警,将异常信息推送给家人,使家人得到及时守护。

华为拥有激光雷达、毫米波雷达的自研技术,该传感器技术主要为智能驾驶服务,并延伸到智能家居等领域。华为没有聊AI,但AI技术已经深度融入到华为的传感器产品中。

据传感器业内资深人士分析,用毫米波雷达检测人体存在和动作并不难,难在如何甄别各种动作事件,避免误判——譬如蹲下就不应该识别成跌倒,目前市场上部分毫米波雷达跌倒监测设备存在较大的误测情况。

显然,华为将该毫米波雷达命名为AI 辅助康养传感器,使用AI技术对毫米波雷达反馈的数据进行识别和判断,提升识别准确率——庞大的数据库和先进的AI模型也是华为的强项,许多传统传感器企业并不具备。

此前,在SensorShenzhen2024上,专家网编辑专访了Bosch Sensortec高级产品经理周良,此前博世已推出集成可编程AI系统的IMU单元BHI380,其深入分享了博世对AI技术在传感器中的应用:

“我们对AI的理解,就是说我们过去的传感器其实就是给客户提供一些原始的数据,比如说,以加速器和陀螺仪来讲,它可能输出的就是一个加速度信号或者一个角速度信号给到客户。但是从真正应用的角度来讲,客户可能需要把这些物理量变成它实际使用到的一些数据,那这里面需要一个算法的过程(来进行计算),在以前这个算法需要客户自己来开发,自己来做这方面的应用。

现在,我们的智能传感器,就是在传感器里面放入相当有计算力的一些计算单元 。可以是一个外接的MCU,也可以是SoC,那它里面就能够跑我们博世自己开发的一些算法。这些算法能够实现本地运行,或者叫做边缘计算这套模式让这个计算重新回到我们传感器的这边,来减少整个系统的功耗。 然后同时也可以减少客户对算法开发的负担。

如果我们能够提供一些优质的算法,客户可能拿到这些产品就能直接去应用。他不需要再根据你的传感器,针对某个场景去开发重复的算法,这样产品开发效率就能提高,所以这个是我们在智能传感器领域做的一些探索。

通过博世提供的集成在传感器中的AI算法模块,可以大大减轻下游用户的产品开发难度,提高产品研发效率——这意味着下游企业将能极大节约研发成本。

如果说博世作为消费电子传感器巨头,本身对AI等新技术更为敏锐,那么,工业传感器巨头基恩士推出的AI检测案例,则意味着在工业传感器等全产业,巨头们都在积极思考AI技术在传感器中的应用。

基恩士在其官方公众号中发布AI检测案例,文中指出“AI视觉检测在工业机动化领域也逐渐解决了人工检测成本高、稳定性差、检出率不达标等难题。”

通过基恩士先进的光电传感器配合AI算法,能够应对工业场景中更多未知场景的精密检测需求,譬如铸铝件的砂眼大小、树脂件的划痕长短等,是否符合质检要求。

▲来源:基恩士公众号

结语

数据本身没有价值,只有将数据转化为可读易懂的信息,用于辅助决策,解决实际问题,那么数据才被赋予了价值。

未来,全面智能化时代到来,数以亿万计的传感器被使用,将产生海量的数据,如何从这些传感器数据中进行筛选,形成结论,帮助我们做出决策,才是这些传感器的价值。

在以往,许多时候传感器传回来的数据,需要人工进行分析,做出判断,大大降低传感器的利用率,面对海量的传感器数据如何快速做出判断?答案很显然——依赖于人工智能技术,对亿万传感器数据进行分析,做出合理的执行或者告警,这才是人工智能的价值。

显然,随着AI技术的进步,未来对海量传感器数据的处理,传感器+AI,感知数据加上大脑,才能有价值。

科普 磁传感器

我们伟大中华祖先的四大发明之一——指南针,可谓是无人不知啊,对于现代传感器技术来讲,它可算得上是磁传感器的鼻祖了。

而在当今的电子时代,磁传感器在电机、电力电子技术、汽车工业、工业自动控制、机器人、办公自动化、家用电器及各种安全系统等方面都有着广泛的应用。

磁传感器

磁传感器是一种把磁场、电流、应力应变、温度、光等外界因素引起的敏感元件磁性能变化转换成电信号,以这种方式来检测相应物理量的器件。用于感测速度、运动和方向,应用领域包括汽车、无线和消费电子、军事、能源、医疗和数据处理等。

磁传感器市场按照技术进步的发展,主要分为四大类:霍尔效应(Hall Effect)传感器、各向异性磁阻(AMR)传感器、巨磁阻(GMR)传感器隧道磁阻(TMR)传感器

其中,霍尔效应传感器的历史最悠久,获得广泛应用。随着持续的技术研发,各种磁传感器诞生,并拥有更优异的性能、更高的可靠性。

霍尔效应(Hall Effect)传感器1879 年,美国物理学家霍尔在研究金属导电机制时发现了霍尔效应。但因金属的霍尔效应很弱而一直没有实际应用案例,直到发现半导体的霍尔效应比金属强很多,利用这种现象才制作了霍尔元件。

在半导体薄膜两端通以控制电流 I,并在薄膜的垂直方向施加磁感应强度为 B 的匀强磁场,半导体中的电子与空穴受到不同方向的洛伦兹力而在不同方向上聚集,在聚集起来的电子与空穴之间会产生电场,电场强度与洛伦兹力产生平衡之后,不再聚集,这个现象叫做霍尔效应。在垂直于电流和磁场的方向上,将产生的内建电势差,称为霍尔电压 U。

霍尔电压 U 与半导体薄膜厚度 d,电场 B 和电流 I 的关系为 U=k(IB/d)。这里 k 为霍尔系数,与半导体磁性材料有关。

霍尔效应示意图

霍尔传感器利用霍尔效应的原理制作,主要有霍尔线性传感器、霍尔开关和磁力计三种。

1. 线性型霍尔传感器由霍尔元件、线性放大器和射极跟随器组成,它输出模拟量。输出电压与外加磁场强度呈线性关系,如下图所示,在 B1~B2 的磁感应强度范围内有较好的线性度,磁感应强度超出此范围时则呈现饱和状态。

线性型霍尔传感器工作原理

霍尔线性器件拥有很宽的磁场量测范围,并能识别磁极。其应用领域有电力机车、地下铁道、无轨电车、铁路等,还可用于变频器中用于监控电量、光伏直流柜监测光伏汇流箱实时输出电流的作用、电动机保护等。线性霍尔传感器还可以用于测量位置和位移,霍尔传感器可用于液位探测、水流探测等。

2. 开关型霍尔传感器由稳压器、霍尔元件、差分放大器,斯密特触发器和输出级组成,它输出数字量。

开关型霍尔传感器工作原理

霍尔开关器件无触点、无磨损、输出波形清晰、无抖动、无回跳、位置重复精度高,工作温度范围宽,可达 -55℃~150℃。开关型霍尔传感经过一次磁场强度的变化,则完成了一次开关动作,输出数字信号,可以计算汽车或机器转速、ABS 系统中的速度传感器、汽车速度表和里程表、机车的自动门开关、无刷直流电动机、汽车点火系统、门禁和防盗报警器、自动贩卖机、打印机等。

3. 磁力计

是利用霍尔效应产生的电势差来测算外界磁场的大小和极性。磁力计是采用 CMOS 工艺的平面器件。工艺相对一般 IC 更为简单,一般采用 P 型衬底上 N 阱上形成传感器件,通过金属电极将传感器与其他电路(如放大器、调节处理器等)相连。

但这样设计的的霍尔传感器只能感知垂直于管芯表面的的磁场变化,因此增加了磁通集中器(magnetic flux concentrator),工艺上来讲就是做原来的管芯上增加一层坡莫合金,可探测平行于管芯方向的磁场。由此,霍尔传感器实现了从单轴到三轴磁力计的跨越式发展。

图(a)增加磁通集中器的霍尔传感器的顶视图 图(b)增加磁通集中器的霍尔传感器的剖面图

磁力计广泛应用于智能手机、平板电脑和导航设备等移动终端,拥有巨大的市场前景。同时,磁力计可以与加速度计组成 6 轴电子罗盘,三种惯性传感器(加上陀螺仪)组合在一起还能实现 9 轴组合传感器,构成更强大的惯性导航产品。

各向异性磁阻(AMR)传感器

某些金属或半导体在遇到外加磁场时,其电阻值会随着外加磁场的大小发生变化,这种现象叫做磁阻效应,磁阻传感器利用磁阻效应制成。

1857 年,Thomson 发现坡莫合金的的各向异性磁阻效应。对于有各向异性特性的强磁性金属, 磁阻的变化是与磁场和电流间夹角有关的。我们常见的这类金属有铁、钴、镍及其合金等。

当外部磁场与磁体内建磁场方向成零度角时, 电阻是不会随着外加磁场变化而发生改变的;但当外部磁场与磁体的内建磁场有一定角度的时候, 磁体内部磁化矢量会偏移,薄膜电阻降低, 我们对这种特性称为各向异性磁电阻效应(Anisotropic Magnetoresistive Sensor,简称 AMR)。磁场作用效果下图。

坡莫合金的 AMR 效应

磁阻变化值与角度变化的关系

薄膜合金的电阻 R 就会因角度变化而变化,电阻与磁场特性是非线性的,且每一个电阻并不与唯一的外加磁场值成对应关系。从上图中,我们可以看到,当电流方向与磁化方向平行时,传感器最敏感,在电流方向和磁化方向成 45 度角度时,一般磁阻工作于图中线性区附近,这样可以实现输出的线性特性。

AMR 磁传感器的基本结构由四个磁阻组成了惠斯通电桥。其中供电电源为 Vb,电流流经电阻。当施加一个偏置磁场 H 在电桥上时,两个相对放置的电阻的磁化方向就会朝着电流方向转动,这两个电阻的阻值会增加;而另外两个相对放置的电阻的磁化方向会朝与电流相反的方向转动,该两个电阻的阻值则减少。通过测试电桥的两输出端输出差电压信号,可以得到外界磁场值。

AMR 磁阻传感器等效电路

各向异性磁阻(AMR)技术的优势有以下几点:

1. 各向异性磁阻(AMR)技术最优良性能的磁场范围是以地球磁场为中心,对于以地球磁场作为基本操作空间的传感器应用来说,具有广大的运作空间,无需像霍耳元件那样增加聚磁等辅助手段。

2. 各向异性磁阻(AMR)技术是唯一被验证,可以达到在地球磁场中测量方向精确度为一度的半导体工艺技术。其他可达到同样精度技术都是无法与半导体集成的工艺。因此,AMR 可与 CMOS 或 MEMS 集成在同一硅片上并提供足够的精确度。

3. AMR 技术只需一层磁性薄膜,工艺简单,成本低,不需要昂贵的制造设备,具有成本优势。

4. AMR 技术具有高频、低噪和高信噪比特性,在各种应用中尚无局限性。

AMR 磁阻传感器可以很好地感测地磁场范围内的弱磁场测量,制成各种位移、角度、转速传感器,各种接近开关,隔离开关,用来检测一些铁磁性物体如飞机、火车、汽车。其它应用包括各种导航系统中的罗盘,计算机中的磁盘驱动器,各种磁卡机、旋转位置传感、电流传感、钻井定向、线位置测量、偏航速率传感器和虚拟实景中的头部轨迹跟踪。

巨磁阻(GMR)传感器

与霍尔(Hall)传感器和各向异性磁阻(AMR)传感器相比,巨磁阻(GMR, Giant Magneto Resistance)传感器要年轻的多!这是因为 GMR 效应的发现比霍尔效应和 AMR 效应晚了 100 多年。

1988 年,德国科学家格林贝格尔发现了一特殊现象:非常弱小的磁性变化就能导致磁性材料发生非常显著的电阻变化。同时,法国科学家费尔在铁、铬相间的多层膜电阻中发现,微弱的磁场变化可以导致电阻大小的急剧变化,其变化的幅度比通常高十几倍。费尔和格林贝格尔也因发现巨磁阻效应而共同获得 2007 年诺贝尔物理学奖。

一般的磁铁金属,在加磁场和不加磁场下电阻率的变化为 1%~3%,但铁磁金属 / 非磁性金属 / 铁磁金属构成的多层膜,在室温下可以达到 25%,低温下更加明显,这也是巨磁阻效应的命名缘由。

GMR 和 AMR 在外加磁场下电阻率变化示意图

“巨”(giant)来描述此类磁电阻效应,并非仅来自表观特性,还由于其形成机理不同。常规磁电阻源于磁场对电子运动的直接作用,呈各向异性磁阻,即电阻与磁化强度和电流的相对取向有关。相反,GMR 磁阻呈各向同性,与磁化强度和电流的相对取向基本无关。

巨磁阻效应仅依赖于相邻磁层的磁矩的相对取向,外磁场的作业只是为了改变相邻铁磁层的磁矩的相对取向。除此以外,GMR 效应更重要的意义是为进一步探索新物理——比如隧穿磁阻效应(TMR: Tunneling Magnetoresistance)、自旋电子学(Spintronics)以及新的传感器技术奠定了基础。

GMR 效应的首次商业化应用是 1997 年,由 IBM 公司投放市场的硬盘数据读取探头。到目前为止,巨磁阻技术已经成为全世界几乎所有电脑、数码相机、MP3 播放器的标准技术。

GMR 传感器的材料结构

具有 GMR 效应的材料主要有多层膜、颗粒膜、纳米颗粒合金薄膜、磁性隧道结合氧化物、超巨磁电阻薄膜等五种材料。其中自旋阀型多层膜的结构在当前的 GMR 磁阻传感器中应用比较广泛。

自旋阀主要有自由层(磁性材料 FM),隔离层(非磁性材料 NM),钉扎层(磁性材料 FM)和反铁磁层(AF)四层结构。

自旋阀 GMR 磁阻传感器基本结构

GMR 磁阻传感器由四个巨磁电阻构成惠斯通电桥结构,该结构可以减少外界环境对传感器输出稳定性的影响,增加传感器灵敏度。当相邻磁性层磁矩平行分布,两个 FM/NM 界面呈现不同的阻态,一个界面为高阻态,一个界面为低阻态,自旋的传导电子可以在晶体内自由移动,整体上器件呈现低阻态;而当相邻磁性层磁矩反平行分布,两种自旋状态的传导电子都在穿过磁矩取向与其自旋方向相同的一个磁层后,遇到另一个磁矩取向与其自旋方向相反的磁层,并在那里受到强烈的散射作用,没有哪种自旋状态的电子可以穿越 FM/NM 界面,器件呈现高阻态。

平行磁场和反平行磁场作用下的等效电路图

GMR 磁阻传感器商业化时间晚于霍尔传感器和 AMR 磁阻传感器,制造工艺相对复杂,生产成本也较高。但其具有灵敏度高、能探测到弱磁场且信号好,温度对器件性能影响小等优点,因此市场占有率呈稳定状态。GMR 磁阻传感器在消费电子、工业、国防军事及医疗生物方面均有所涉及。

隧道磁阻(TMR)传感器早在 1975 年,Julliere 就在 Co/Ge/Fe 磁性隧道结(MagneticTunnelJunctions,MTJs)中观察到了 TMR(Tunnel Magneto-Resistance)效应。但是,这一发现当时并没有引起人们的重视。在此后的十几年里,有关 TMR 效应的研究进展十分缓慢。在 GMR 效应的深入研究下,同为磁电子学的 TMR 效应才开始得到重视。2000 年,MgO 作为隧道绝缘层的发现为 TMR 磁阻传感器的发展契机。

2001 年,Butler 和 Mathon 各自做出理论预测:以铁为铁磁体和 MgO 作为绝缘体,隧道磁电阻率变化可以达到百分之几千。同年,Bowen 等首次用实验证明了磁性隧道结(Fe/MgO/FeCo)的 TMR 效应。2008 年,日本东北大学的 S. Ikeda, H. Ohno 团队实验发现磁性隧道结 CoFeB/MgO/CoFeB 的电阻率变化在室温下达到 604%,在 4.2K 温度下将超过 1100%。TMR 效应具有如此大的电阻率变化,因此业界越来越重视 TMR 效应的研究和商业产品开发。

TMR 元件在近年才开始工业应用的新型磁电阻效应传感器,其利用磁性多层膜材料的隧道磁电阻效应对磁场进行感应,比之前所发现并实际应用的 AMR 元件和 GMR 元件具有更大的电阻变化率。我们通常也用磁隧道结(Magnetic Tunnel Junction,MTJ)来代指 TMR 元件,MTJ 元件具有更好的温度稳定性,更高的灵敏度,更低的功耗,更好的线性度,相对于霍尔元件不需要额外的聚磁环结构,相对于 AMR 元件不需要额外的 set/reset 线圈结构。

TMR 磁阻传感器的材料结构及原理

从经典物理学观点看来,铁磁层(F1)+绝缘层(I)+铁磁层(F2)的三明治结构根本无法实现电子在磁层中的穿通,而量子力学却可以完美解释这一现象。当两层铁磁层的磁化方向互相平行,多数自旋子带的电子将进入另一磁性层中多数自旋子带的空态,少数自旋子带的电子也将进入另一磁性层中少数自旋子带的空态,总的隧穿电流较大,此时器件为低阻状态;

当两层的磁铁层的磁化方向反平行,情况则刚好相反,即多数自旋子带的电子将进入另一磁性层中少数自旋子带的空态,而少数自旋子带的电子也进入另一磁性层中多数自旋子带的空态,此时隧穿电流较小,器件为高阻状态。

可以看出,隧道电流和隧道电阻依赖于两个铁磁层磁化强度的相对取向,当磁化方向发生变化时,隧穿电阻发生变化,因此称为隧道磁电阻效应。

TMR 磁化方向平行和反平行时的双电流模型

TMR 元件在近年才开始工业应用的新型磁电阻效应传感器,其利用磁性多层膜材料的隧道磁电阻效应对磁场进行感应,比之前所发现并实际应用的 AMR 元件和 GMR 元件具有更大的电阻变化率。我们通常也用磁隧道结(Magnetic Tunnel Junction,MTJ)来代指 TMR 元件,MTJ 元件具有更好的温度稳定性,更高的灵敏度,更低的功耗,更好的线性度,相对于霍尔元件不需要额外的聚磁环结构,相对于 AMR 元件不需要额外的 set/reset 线圈结构。

下表是霍尔元件、AMR 元件、GMR 元件以及 TMR 元件的技术参数对比,可以更清楚直观的看到各种技术的优劣。

霍尔元件、AMR 元件、GMR 元件以及 TMR 元件的技术参数对比

作为 GMR 元件的下一代技术,TMR(MTJ)元件已完全取代 GMR 元件,被广泛应用于硬盘磁头领域。相信 TMR 磁传感技术将在工业、生物传感、磁性随机存储(Magnetic Random Access Memory,MRAM)等领域有极大的发展与贡献。

磁传感器的发展,在本世纪 70~80 年代形成高潮。90 年代是已发展起来的这些磁传感器的成熟和完善的时期。

磁传感器的应用十分广泛,已在国民经济、国防建设、科学技术、医疗卫生等领域都发挥着重要作用,成为现代传感器产业的一个主要分支。在传统产业应用和改造、资源探查及综合利用、环境保护、生物工程、交通智能化管制等各个方面,它们发挥着愈来愈重要的作用。

相关问答

为什么说 磁电传感器 是有源传感器?

磁电式传感器的工作原理是基于电磁感应定律,它的输出电动势信号和切割磁力线的速度成正比,常做成测量速度的传感器,所以也称速度传感器。只要在测量电路中加上...

汽车霍尔传感器跟 磁电式传感器 怎么区分?

霍尔传感器是数字式传感器,有两根电源线,和一根信号线,如果外部有磁信号,信号线上面会有一个脉冲信号,速度与脉冲信号的个数成正比。磁电式传感器,无需外部...

互感式传感器和 磁电式传感器 工作原理?

互感式传感器的工作原理是利用电磁感应中的互感现象,将被测位移量转换成线圈互感的变化。由于常采用两个次级线圈组成差动式,故又称差动变压器式传感器。互感...

转速 传感器 ,轮速传感器ABS传感器,是同一样东西吗?

一、性质不同1、车速传感器:是用来检测电控汽车的车速的装置。2、轮速传感器:是用来测量汽车车轮转速的传感器。二、功能不同1、车速传感器:有控制电脑用...

电磁限位 传感器 的工作原理?

磁电式传感器是利用电磁感应原理,将输入的运动速度转换成线圈中的感应电势输出。它直接将被测物体的机械能量转换成电信号输出,工作不需要外加电源,是一种典型...

汽车上都有什么 传感器 ,都是干什么的起到什么作用

[最佳回答]1、曲轴转速传感器,用于检测发动机转速和判定一(四)缸上止点。凸轮轴位置传感器,用于区分一(四)缸压缩上止点。节气门位置传感器,用于检测发动机的...

cmp 传感器 是什么?

CMP传感器即凸轮轴位置传感器,它的主要作用是“判缸”,即找到一缸上止点的位置,它与曲轴转速传感器配套工作,将各自信号传送发动机电子控制单元ECU,从而精确...

什么是相位 传感器 ?

1、相位传感器作为发动机的灵魂,一直扮演着非常重要的角色,是我们观察点火那一刻的重要依据。今天,我们来看看相位传感器的作用。2、我们来看看什么是相位传...

15年的明锐轮速 传感器 坏了一个需要更换4个吗?

不需要一起更换。只需要更换坏掉的那个就好了。轮速传感器是用来测量汽车车轮转速的传感器。常用的轮速传感器主要有:磁电式轮速传感器、霍尔式轮速传感器...

汽车上哪些 传感器 是霍尔 ?

汽车上的转速传感器和车速传感器是霍尔式传感器。汽车上的转速传感器和车速传感器是霍尔式传感器。霍尔式传感器是一种基于霍尔效应的传感器,通过测量磁场的变...

展开全部内容