化学传感器法 中国科学家通过“魔角”调控二维材料,为化学传感器研发全新方向
中国科学家通过“魔角”调控二维材料,为化学传感器研发全新方向
“科研就是如此,总会发生各种意外。湾区疫情在 2020 年夏天刚有所缓和,加州山火又开始肆虐。到处弥散着一股烧柴火的味道,空气质量可想而知。当研究对象来到纳米尺度,对空气洁净度的要求特别高。有时在显微镜下检查样本,一颗灰尘突然撞到表面上,就会导致样品报废。实验室原本有空气净化器,但是那年山火特别严重,于是加急购买好几台空气净化器。所有净化器开足马力运转 24 小时后,终于解决了空气灰尘问题。”目前正在加州大学伯克利分校从事博后研究的余韵表示。
图 | 余韵(来源:余韵)
这项在“疫情和山火”中进行的研究,
主要聚焦于界面电子转移和魔角石墨烯,所揭示的原理可推动催化剂设计和电化学传感器的发展。 “由此发表的论文,是在目前魔角扭曲石墨烯的科研基础上,开创性地探索了扭曲石墨烯层间转角对电化学活性的影响。这项成果是跨领域的,将凝聚态物理的前沿成果拓展到了电化学领域。它会激发业内同行对扭转二维材料进行更深的探索,并将扭角控制材料活性的思路,拓展到化学催化和生物传感等更为广阔的领域。 ”他表示。虽然这里研究的对象只是微米大小的石墨烯,但随着晶圆尺度气相沉积法的飞速发展,这种魔角扭转石墨烯和其他扭转二维材料将具备应用于工业电催化的潜力。加以其他调制方法例如栅极电压,该扭转二维材料可增强对特定化学物质的电化学灵敏度,进而用于新型气体或生物传感器的研发上。
近日,相关论文以《具有莫尔平带的扭曲双层石墨烯的可调谐角度相关电化学》(Tunable angle-dependent electrochemistry at twisted bilayer graphene with moiré flat bands)为题,发表在 Nature Chemistry 上,并成为该期刊 2022 年第三期封面。同期 Nature Chemistry 新闻与观点栏目评价称,该项工作为二维材料电化学开辟了一个新方向。
图 | 相关论文(来源:Nature Chemistry)
审稿人则分别评论道:“这项工作的优点在于将详细的动力学分析结合材料的电子结构进行论证”“(作者)出色地选择了反应物分子,有助于揭示反应速率和电子结构的关系”“鉴于当前对魔角扭转石墨烯的浓厚兴趣,余博士的这项工作必定会受到广泛关注”。
石墨烯改性琳琅满目,却很难在调制程度上做到精准
余韵介绍道,电化学反应是电能与化学能相互转换的过程,其反应速率决定了能源转换效率,该反应在固体(电极)与液体(电解质)的界面上进行,而电极材料往往对电化学反应速率有决定性作用。因此,探寻高效、廉价的电极材料,对于利用清洁能源去驱动化工生产和发展节能减排具有重要意义。
二维材料是一种新兴电极材料,它最具吸引力的两大特性分别是:比表面积极大、可调性出色。并且,当厚度降低到纳米级后,二维材料展现出极其独特的电子特性。
作为二维材料的代表,石墨烯是一种零带隙的半金属,在电子器件、微纳加工、储能、生物医药等方面具有重要应用前景。石墨烯是由碳原子组成的六边形单层原子晶体,不含金属元素,从廉价石墨中即可获得,且具有较强的导电性,因而是一种极具潜力的电极材料。
以往研究大多是改善石墨烯的电化学性能,比如通过化学参杂、缺陷工程、表面修饰等途径。这些方法虽然各有优点,却很难在调制程度上做到精准。
而通过层间扭角来操控二维材料性质,是一种独辟蹊径的途径。在该方法中,二维层状材料通过弱范德华力物理组装在一起,材料中电子的相互作用可以通过层与层之间晶格的角度来控制。
以众所周知的魔角石墨烯为例,当两层平行石墨烯堆成约 1.1 度的“魔角”时,材料会产生超导效应。可以说,魔角石墨烯的发现开辟了凝聚态物理的全新领域,同时也为电化学的研究提供了全新思路。
在电化学反应中,电极材料的电子能态密度起着至关重要的作用。较高的电子能态密度意味着更多的电子可以参与电子转移,并在单位时间内氧化或者还原更多的分子。
在魔角扭曲石墨烯中,电子被集中到一个非常窄的能量区间里,可以产生极高的电子能态密度。这种独特的电子特性,让余韵看到了运用魔角石墨烯来加速电化学反应的机会。
研究中,他通过扫描电化学池显微镜(SECCM,canning Electrochemical Cell Microscopy)测量了扭曲双层石墨烯表面的电化学反应速率。结果表明,和普通双层石墨烯相比,魔角扭曲石墨烯表面进行的 Ru(NH3)63+ 电化学还原反应速率增加了近 10 倍。在不引入任何参杂或者缺陷位的情况下,仅通过对层间转角进行精细调控,就能大幅提升能量转换效率。
凝聚态物理学和电化学“水到渠成”的结合
余韵的博后导师美国加州大学伯克利分校化学学院教授 D. 夸贝纳·贝迪亚科(D. Kwabena Bediako),是一位拥有凝聚态物理学背景的化学教授,而余韵则拥有电化学背景。
于是,将凝聚态物理的前沿研究和电化学相互结合的立项也就水到渠成。在和导师详细讨论后,他们一致认为探索扭角二维材料的电化学研究会是个非常新颖的课题。
立项之后,便是具体的实验步骤。期间,余韵发现有很多问题需要解决。
首先需要解决的问题,是探寻一种可靠的方法来制备扭转石墨烯样品。为了精确控制角度,他先用纳米金属针尖把一块单层石墨烯切断成两片,把其中一片相对于另一片旋转到一个需要的角度(比如魔角 1.1°),然后再把两块叠起来。相比较于气相沉积法,目前只有这种机械堆叠的方式才能精确地控制转角。
第二个需要解决的问题,是如何表征样品、并测量出样品的扭角。这里他运用了魔角扭转石墨烯的另一个特性:莫尔超晶格。由于层间扭转的缘故,两层晶格的叠加方式会产生一种周期性变化,并且和转角相关,这种周期性交替出现的叠加形态就是莫尔超晶格。
(来源:Nature Chemistry)
通过解析扭转石墨烯的莫尔超晶格,即可得知扭角的大小,并进一步分析电子结构等信息。期间,余韵通过扫描隧道显微镜(STM,Scanning Tunneling Microscope)得到了不同扭角形成的莫尔超晶格成像,并通过 Delaunay 三角化等方法对 STM 图像进行处理,进而得出详尽的扭角统计数据。
(来源:Nature Chemistry)
第三个需要解决的问题,是如何进行可靠的电化学测量。这里他使用扫描电化学池显微镜(SECCM),这是一种新兴的纳米尺度电化学测量技术。采用此技术,就能通过纳米尺寸玻璃微管探针、来测量样品的局部电化学活性,并且空间分辨率可达 100 纳米以下。
和传统电化学测量相比,该技术可以有选择性地测量样品的不同区域,并排除其他结构比如边沿等影响。通过稳态循环伏安和有限元模拟等方法,他发现:双层石墨烯表面 Ru(NH3)63+ 电化学还原的速率常数和扭角的大小有显著关联。“魔角”和其他转角相比,可以将反应速率增强将近十倍。
解决了实验问题,接下来便是分析数据。在定量分析扭角和反应动力学的关系时,余韵考虑到了晶格重构效应。在扭角小于或等于“魔角”的情况下,扭角石墨烯的晶格会自发的重构,导致活性较高区域的面积、会随着扭角的减小而降低。
(来源:Nature Chemistry)
他和同事们通过四维扫描透射电子显微镜(4D-STEM),对晶格重构后的莫尔超晶格做了详尽研究。最终,余韵运用这些晶格信息定量分析了电化学动力学数据,并发现特定区域上的局部活性更高一些,这也和 Marcus-Gerischer 电子转移理论相符合。
定量分析结果表明,魔角扭转石墨烯不仅会通过电子能态密度来增强电化学速率,而且在其他方面也有影响。因此,后续余韵将结合理论计算和其他实验技术,来探索魔角石墨烯中双电层结构和电子偶合等因素对电化学特性的影响。此外,他还会把“魔角”调制电化学的方法用于过渡金属二硫属化合物等其他二维材料,并探寻扭角对其他催化反应的调制作用。
据介绍,余韵是湖北襄阳人,本科就读于华中科技大学化学与化工学院,博士就读于美国纽约市立大学并获得博士论文奖学金,期间从事纳米尺度电化学的研究。取得化学博士学位后,他在天普大学做了第一站博士后,从事表面等离激元增强的光电化学研究。目前在加州大学伯克利分校进行第二站博士后研究,从事二维材料及范德华异质结的电催化研究。截止目前,在 Nature Chemistry、JACS、ACS Nano 等期刊发文 29 篇。
-End-
欢迎科研从业者扫码加群,加好友请备注“单位+领域+职位”(不加备注不予通过)
参考:
1、Yu, Y., Zhang, K., Parks, H. et al. Tunable angle-dependent electrochemistry at twisted bilayer graphene with moiré flat bands. Nat. Chem. 14, 267–273 (2022). https://doi.org/10.1038/s41557-021-00865-1
珍晓推科普「第113期」化学传感器
化学传感器
chemical sensor
定义:含有对于待测化学物质敏感的材料,在与被测物质中的分子或离子互相接触时,能将其浓度转换为电信号进行检测的仪器。
学科:冶金学_冶金物理化学_冶金电化学
相关名词:电化学 电极 选择性
来源:全国科学技术名词审定委员会
图片来源:视觉中国
【延伸阅读】
化学传感器的工作原理主要是将敏感材料与被测物质中的分子、离子或生物物质相互接触时所引起的电极电势、表面化学势的变化或所发生的表面化学反应或生物反应,直接或间接地转换为电信号。化学传感器实际上是各种不同的专用电极。因其携带方便、使用简单,得到结果迅速、灵敏度高,所以在矿山开发、石油化工、医疗救护和日常生活中越来越多地用来对易燃、易爆、有毒、有害气体进行监测预报和自动控制的装置,或用来测定各种pH溶液中含量极低的物质,甚至可以测量细胞中的离子浓度。
电化学气体传感器中的CO2气敏电极,是在离子选择性电极基础上发展起来的。它利用气敏电极或气体扩散电极测量混合气体中或溶解在溶液中的CO2含量。将这种气敏电极做成特殊的探针形式,可用来检测动脉中CO2含量或表皮上CO2的含量,这对危重患者的监护和手术监护有着重要作用。
目前化学传感器主要分为半导体陶瓷气体传感器、电化学气体传感器、半导体场效应化学传感器和生物传感器等。随着科学技术水平的不断提高,近年来,传感器发展迅速,有些甚至具有“嗅觉”和“味觉”功能,可以在许多化学物质中有选择性地测出某种含量极少的特定物质。这种传感器在生物医学、环境保护、工业生产和日常生活等方面发挥着越来越大的作用。
相关问答
化学 数字化 传感器 的使用方法?化学数字化传感器使用方法在使用光电化学传感器时,光电化学传感器的使用方法也有这很多种组合方式。特别需要注意的是,在选择光电传感器的时候,需要考虑以下...
传感器 控制器原理?1、模拟传感器:将被测量的非电学量转换成模拟电信号;2、数字传感器:将被测量的非电学量转换成数字输出信号(包括直接和间接转换);3、膺数字...2、数字...
用 电化学传感器 测血糖遇到的问题?-盖德问答-化工人互助问答社区电极是怎么修饰的呢?能否排除血样中的干扰物质?检测电位是多少?我在负电位下检测的时候遇到产生相反电流信号的情况,是血清分离不好的样本,我推测是...
传感器 按照采集的数据类型不同可分为?一、按用途压力敏和力敏传感器、位置传感器、温度传感器、温湿度传感器、气体传感器、液位传感器、能耗传感器、速度传感器、加速度传感器、射线辐射传感器、...
【现代 化学传感器 技术是研究溶液中离子反应的重要手段,某化...[最佳回答]溶液导电率的大小取决于离子浓度的大小,离子浓度越大,导电能力越强.当接近终点时,溶液中离子浓度已非常之小,而加入的氢氧化钠溶液的离子浓度并没有...
化学 与生物传感技术前景?这个专业就业前景总体上看还是不错的。随着社会发展和科技进步,化学与生物传感技术在实际生活中应用变得越来越广泛,特别是在军事方面的应用更是大大提升了其...
传感器 是什么原理[最佳回答]传感器的原理是通过敏感元(查成交价|参配|优惠政策)件和转换元件,将特定的被测信号转换成可用的信号,并按照一定的规律输出,以满足信息传输、处理、...
co 传感器 原理详解?CO传感器属于化学传感器,而化学传感器主要由两部分组成:传导系统与转换系统。CO气体传感器与报警器配套使用,是报警器中的核心检测元件,它是以定电位电解为基...
传感器 是什么专业?传感器原理与检测技术属工科专业,一般测控工程的专业开这门课程,就是最基本的传感器技术。传感器与检测技术”是现代科技的前沿技术,是制造业自动化和信息化...
氧 传感器 的检测方法是什么?[最佳回答]氧传感器的检测方法是:1、万用表测电压法;2、氧传感器检查仪检查法;3、万用表测电阻法。氧传感器的工作原理是:利用陶瓷敏感元(查成交价|参配|优惠...