上海羊羽卓进出口贸易有限公司

传感器 imu 集成硅光传感器时代,「意子信息」想用纳米光子晶体结合MEMS做出了极高精度的光量子传感器

发布时间:2024-10-06 12:10:54

集成硅光传感器时代,「意子信息」想用纳米光子晶体结合MEMS做出了极高精度的光量子传感器

采访:刘源、李子月

作者:刘源、李子月

编辑:石亚琼

**

传感器种类太多,我们以惯导IMU为例来说明,惯导IMU分为三类:

1. 机械类IMU:最古老的IMU类型,精度高,但昂贵、体积大,现在市场上比较少见

2. 光学类IMU,核心部件是“激光光路”或“光学谐振腔”:又分为激光RLG、光纤FOG、硅光IMU(本文所述新产品ACA)。光学类精度高,但RLG和FOG都只能作为陀螺仪,价格昂贵且体积偏大。

3. MEMS压电/电容IMU:其中,MEMS工艺的电容IMU虽然成本低、体积小,但精度差,测量带宽有限。

这几类IMU应用场景各有不同,性能指标例如零偏稳定性、比例因子、随机游走、功耗、体积、带宽、冲击振动、MTBF等指标各有千秋。可分为消费级、工业级和防务/航空级。基于MEMS的低端消费级应用包括AR、可穿戴电子设备、室内导航,单位价格在1-5美元之间。高端工业级应用包括自动驾驶车辆、机器人、物联网、无人机和电影工业,价格在1000美元以内,这两个级别方向的公司包括Honeywell、Xsens、Analog Devices、Bosch、TDK InvenSense和life.augumented等。大尺寸防务级应用价格则将高于10万美元,此领域公司包括Honeywell、KVH、Northrop Grumman和emcore。

常见惯导IMU产品图片

如果用硅基MEMS工艺结合纳米光学谐振腔,并且在晶圆上就将光路和其他硅基器件直接集成在一起,这就是集成硅光MEMS传感器 。它有四个跨时代的意义和好处:

1. 精度高,光学精度

2. 尺寸微小,功耗也低,因为光学谐振腔通过集成硅光工艺已经缩小到数微米级别了

3. 低成本,量大,因为所需硅基半导体工艺成熟,成本优势明显,不涉及到先进制程,很多Foundry厂都能够生产

4. On-chip,该技术路径最终实现不需要分别封装成多个芯片或分立器件再独立安装

这将对传统大部分传感器,例如IMU、陀螺仪、磁力计等,和光学相控阵,都产生颠覆性影响。但为什么这么有用但一直没出现这样的新产品?因为“技术难点,也就是最关键的,就是如何优化设计使数微米级别的集成光腔可以和满足相应性能需求的MEMS结构高效耦合,并且可以通过成熟硅光光刻线量产,且与MEMS工艺相结合,做到低成本量产性的同时保持高性能测量能力。” -加州理工学院应用物理与量子工程博士罗杰如此说到。罗杰曾在Science和Nature Physics上发表光量子芯片论文,参与美国能源部先进量子测试平台并领导超导量子计算芯片研发,并在量子通讯和量子计算领域掌握三项美国专利。

加州理工一直在进行这方面的研究和实用,例如获得2017年诺奖的激光干涉引力波天文台就是运用了相似的光-机械效应,加州理工在将光-机械耦合技术小型化到芯片上也走在世界前沿。罗杰的两位小伙伴,任恒江和杨帆也一直进行着这方面的研究,任恒江为加州理工学院电子工程与量子工程博士,其研发的机械谐振腔打破了量子相干性世界纪录,曾任职于新加坡高性能计算研究所,并在量子通讯和量子计算领域掌握2项美国专利。杨帆为伊利诺伊大学香槟分校航空航天工程博士,熟悉设计制造MEMS元件。Stillwell奖金获得者,从事纳米材料和器件性质研究并发表多篇高质量论文,曾任伊利诺伊商业咨询公司高级经理。

现在这三位加州理工和伊利诺伊的博士们准备将集成硅光传感器商业化,批量生产广泛应用,应用场景包括:地震和油气资源探索、机械震动监测、智能预测性维护(CBM)、驾驶状态监测与评估、先进无人机/机器人、高级别自动驾驶、复杂环境高精度导航、先进AR/VR应用、电影及运动员姿态捕捉和监测、光学相控阵、激光雷达等 。在2019年,三位创始人在美国特拉华成立了公司“Anyon Computing”,中文名“意子信息”,专注于集成硅光MEMS传感器硬件以及相关技术应用量子芯片的研发和销售。

光量子惯性传感器IMU ACA-101

意子信息的第一款产品取名为“光量子惯性传感器IMU ACA-101”,精度可达1μg Hz-1/2。是常见工业级IMU精度百倍左右。带宽>20k Hz,将有效带宽扩大百倍以上。ACA-101测量角度精度类比激光RLG的精度略差一点,但激光RLG售价高达数万人民币,而ACA-101成本只有一百元人民币,内部关键部分2毫米长,2毫米宽,几十微米深,光电封装后体积16立方厘米左右。

ACA-101未封装照片

罗杰介绍它的核心是20微米长、2微米宽、几十微米深的光学谐振腔 。简单讲,它的测量原理通过测位移->反算惯性力->再反算加速度,类似弹簧秤:核心器件包含一个微质量块(Proof-Mass),通过机械(MEMS)结构悬浮,光腔的一端固定、另一端和Proof-Mass相连,在外界加速度的作用下Proof-Mass产生微小的位移。微小位移改变了光强的光学共振的频率,从而可以准确测量该微小位移,进而获得准确的加速度(或者通过科里奥利力原理测量角速度)。该光学谐振腔目前能做到飞米级分辨率,10^-15米,的位移测量,也就是一个质子或中子的直径,已经达到位移测量量子极限。所以能够做到高分辨率、高精度、低底噪声的加速度测量。

ACA-101核心光学部分电镜扫描

弹簧秤原理图

ACA-101原理图

罗杰告诉36氪记者,硅光在通信方面的应用在30年前就已经开始了,主要应用于通信设备基站、中继器。近几年,集成硅光的其他应用开始兴起,包括集成硅光传感与集成硅光计算等。ACA-101第一批demo是用电子束曝光机做出来的,大规模批量生产需要把产线移植到DUV光刻机,意子将与先进硅光代工厂共同推进相关制程在193纳米光刻线上的实现,pdk定义,design rule定义等等。届时,各大晶圆厂商都能进行光量子传感器的生产了。

集成硅光传感器适用行业

硅光芯片产业在过去5年内翻了数倍,在未来5-10年内将达到顶峰,市场体量将达200-300亿美元量级。随着越来越多集成硅光产品的出现,整个产业共同推动相关代工厂在流片工艺和紧凑封装上的进步,高性能硅光芯片和相关元件的低成本生产和小型化方面将获得极大的推动。期待越来越多的消费级产品能用到硅光惯性传感器。

集成硅光传感器市场体量

判定C罗未碰到球的IMU传感器到底是什么?

在葡萄牙2-0击败乌拉圭的比赛中,C罗的头球动作最终被判为未触碰到球,IMU传感器在其中起了关键作用。

当前,2022卡塔尔世界杯还在如火如荼的举办中,除了球员精彩的进球外,本届世界杯的科技也看点十足,许多技术都是世界杯历史上首次使用。

在世界杯小组赛葡萄牙击败乌拉圭的比赛进行到第54分钟时,B费传中后C罗做出头球动作成功破门,C罗也在赛场上欢呼,庆祝自己打破了纪录。不过,在赛场的大屏中却显示该进球归属于布鲁诺·费尔南德斯。

在比赛结束后,C罗还在更衣室中向皮尔斯·摩根(知名主持人)发了短信,声称他确实碰到了布鲁诺·费尔南德斯的传球来打开得分。然而,国际足联官方用球制造商阿迪达斯透露,官方用球内的高精度传感器数据表明C罗在进球过程中没有触球,该进球归属于B费。

传感器图像没有“心跳”,C罗确实未碰到球

在阿根廷队1:2不敌沙特阿拉伯的比赛中,阿根廷队仅罚进一粒点球,其中有三粒进球因为越位被判无效。此外,这场比赛共被判罚10次越位,也创下了自2018年世界杯应用VAR(视频助力裁判)技术以来单场越位次数新高。这场比赛之后,大部分球迷都开始了解到VAR(视频助力裁判)技术,不少媒体也介绍了半自动越位判罚技术(SAOT)的作用。除此之外,在本届世界杯上,每个比赛用球内部的中央都有CTR-CORE,即在足球内部植入一枚中央芯片,虽然类似的技术在篮球、网球等运动中已早有使用,不过这还是第一次被用在足球上。

通常,足球的重量约为400克,踢球时的球速约为60-120公里/小时,若取80公里/小时的球速来计算,其撞击力相当于120公斤左右。对于顶级球员的射门动作来说,其产生撞击力可达200公斤,而世界上某位杰出运动员的一脚有力射门,撞击力更是高达1200公斤。在这种情况下,保持芯片在足球中的稳定就变得非常重要。

为了让足球具有优异的抗震性能,世界杯官方指定用球“Al Rihla”内胆中新的悬挂系统使用了多个连接柱,将芯片固定在球体中心的囊壳中,从而保证了球的平衡性不受影响。同时,该悬挂系统还搭载了内置的运动传感器 ,使这项技术对球员来说不易察觉,也不会影响其任何运动表现。据称,这款设备重14克,实际上是由两个同时工作的独立传感器集成而成,其中之一就是超宽带(UWB)传感器 ,可以跟踪和获取足球精确的位置数据,也可以将数据实时传输至后台系统中。而在本次判断C罗头部是否触碰到足球的过程中发挥作用的则是惯性测量单元(IMU)传感器,用来探测足球细微运动。

据称,这也是世界杯官方比赛用球内有史以来最精确的运动传感器,通过使用UWB传感器获取位置数据、IMU传感器获得精细的三维运动数据,保证了足球关键数据的采集,使得在比赛的任何时刻,当足球被踢、被顶、被扔,甚至轻击时,传感器都会以每秒500次的速度获取相关数据,再通过人工智能系统整合分析,准确判断足球落点与传球点。

球内的IMU传感器将能够自动收集非常准确的足球运动数据,记录球员触球的时间,而每秒500次的频率,意味着每次数据收集间隔仅为2毫秒,极大的提升了足球状态和轨迹的精确度,可以在数秒内将比赛期间收集到的高精度的运动数据发送到视频助理裁判的画面中,以帮助主裁判作出更合理的判罚决定。

从上图左下角可以看出,当B费脚部碰到球时,IMU传感器的图像有了明显的波形变化 。在阿迪达斯的官方声明中,其表示球内的500Hz的IMU传感器使分析能够非常准确。在葡萄牙和乌拉圭的比赛中,通过使用阿迪达斯官方比赛球中的互联球技术,阿迪达斯称其通过IMU传感器测量和所附的图形中缺乏“心跳”,无法测量到球上所受到的外部力,这也明确显示C罗在比赛中的首个进球中并没有真正接触到球。

让C罗“空欢喜”一场的IMU传感器是什么

IMU是惯性运动单元(InerTIal measurement unit)的缩写,而惯性传感器则是用来检测物体的旋转运动(或角速率)及加速度的装置,可以将物理运动转换成电信号,并通过电子电路进行放大和处理 。其原理是惯性定律,从超小型的MEMS传感器到测量精度非常高的激光陀螺,无论尺寸是只有几个毫米的MEMS传感器,还是直径几近半米的光纤器件采用的都是这一原理。

大多数时候,IMU传感器是由四个基本传感器组成,即加速度计、陀螺仪(角速度计)、磁力仪和光学传感器 ,这四个独立的模块可以产生不同的信号,并通过接口将这些信息传送给处理器。

其中,加速度计用来检测物体在载体坐标系统独立三轴的加速度信号,这对运动分析来说非常重要;陀螺仪可用来确定一个物体在三维空间内的方向,主要测量绕三个轴的角速度,即俯仰(X轴)、滚转(Y轴)和偏航(Z轴),组合连接在一起的多个传感器则可以用来模拟整个身体的运动;磁力计有助于定向,可用于校准并将数据定向到正确的位置,它不像其他两个传感器那么重要,但是它们添加了适合户外运动的另一层数据。

而陀螺仪和加速度计,是IMU传感器最核心的部分,也是影响惯性系统性能的主要因素。 尤其是陀螺仪其漂移对惯导系统的位置误差增长的影响是时间的三次方函数,而高精度的陀螺仪制造困难,成本高昂。通常情况下,IMU传感器由三个方向的加速度计与各个方向陀螺仪组成,“3(加速度计)+3(陀螺仪)”的组合也是目前常见的6轴IMU传感器结构。例如,用户在使用手机玩某些游戏时,通过左右或者前后倾斜手机,即可让球类向着对应的方向移动,这就是手机内置带有三轴加速度计的IMU传感器而产生的效果。

IMU传感器市场广泛,欧美企业更占优势

在足球等运动领域之外,惯性传感器还可以应用在消费电子、智能玩具、汽车电子、工业自动化、智慧农业、医疗器械、仪器仪表、机器人、工程机械、导航系统、卫星通信等众多领域, 如SpaceX等用于全球互联网宽带的卫星星座的兴起,正在推动对卫星惯性传感器的需求达到前所未有的水平,商业火箭的发射器子系统对惯性传感器需求的增长,也进一步提高了市场需求,机器人、物流和自动化系统也比任何时候都更加需要惯性传感器。

去年10月,惯性传感器巨头法国Safran收购了即将上市的挪威陀螺仪传感器和MEMS惯性系统制造商Sensonor,以将其业务范围扩展到基于MEMS的传感器技术和相关应用领域。今年5月时,两家法国公司ECA集团和 iXblue 也已经进入合并前的排他性谈判阶段,这些事件都表明惯性传感器市场还在进一步整合当中。

根据新思界产业研究中心发布的报告显示,在全球惯性传感器市场中,美国、日本及欧洲部分国家处于领先地位,代表性企业包括:德国博世BOSCH、意法半导体(ST)、日本东京电气化学工业株式会社(TDK)、美国霍尼韦尔(Honeywell)、美国亚德诺(ADI)等 。而在我国惯性传感器市场中,博世份额占比最大,达到22.9%;意法半导体其次,占比为21.3%;TDK位居第三,占比为17.8%;霍尼韦尔排名第四,占比为16.5%。这四大厂商合计市场份额占比达到78.5%,由此可以看出,我国惯性传感器市场集中度高,本土企业处于竞争劣势地位,市场份额占比小。不过,随着惯性传感器的应用方式和应用范围的丰富,未来全球惯性传感器市场还将持续增长,国内企业或许能够打破国外巨头的垄断,打破惯性传感器市场的现有格局。

写在最后

对于IMU传感器对C罗头球的判断结果,很多网友都表示不论是否碰到了球,C罗都功不可没,没有他的牵制,守门员很可能会击出甚至没收此球。

比赛进行到现在的时刻,这场耗资2200亿美元、充满黑科技的卡塔尔世界杯,已经让人们领略到了智能感知时代的魅力。未来,随着传感器、人工智能、物联网、大数据等的快速发展与落地应用,生产、生活等方面都将更加智能和高效。在此过程中,不断突破创新的IMU等各类传感器件也将助力产业链进一步蓬勃发展。

参考资料:

1.《阿迪达斯推出采用联网技术的FIFA世界杯官方比赛用球》,腾讯网

2.《卡塔尔世界杯高科技足球的高精定位,原来是靠UWB!》,物联网智库

3.《惯性传感器市场规模持续扩大 国外企业处于主导地位》,新思界

相关问答

imu传感器 的原理?

imu传感器的工作原理。惯性测量单元的工作原理是:使用一个或多个加速度感应器,探测当前的加速度速率;使用一个或多个偏航陀螺仪,检测在方向、翻滚角度和倾斜...

IMU 什么意思?

IMU指的是惯性测量单元。IMU大多用在需要进行运动控制的设备,如汽车和机器人上。也被用在需要用姿态进行精密位移推算的场合,如潜艇、飞机、导弹和航天器的惯...

imu 校准项目?

飞行器受到大的震动或者放置不水平,开机自检的时候会显示IMU异常。此时需要重新校准IMU,步骤如下:打开飞机遥控器,连上App,把飞机放置在水平的台面上。进...

imu 正在初始化什么意思?

IMU正在初始化是指惯性测量单元正在启动并进行初始化,以确保在使用期间可以获得准确的测量数据。具体来说,IMU包含各种传感器,如加速度计、陀螺仪等,这些传感...

lmu校准啥意思?

大疆IMU校准的中文名称是惯性测量单元,是无人机内部重要的传感器,相当于无人机的“小脑”,用来感知飞行姿态、加速度和高度的变化。当我们的无人机用的时间比...

imu 九轴 传感器 和arduino连接?

1.可以连接2.因为imu九轴传感器和arduino都是常用的电子设备,而且它们之间的连接也相对简单。imu九轴传感器可以通过I2C或SPI接口与arduino进行连接,通过相...

geitmelk是什么意思?

madgwick是一个人,他写了一个IMU(三轴角速度加速度测量装置)传感器的融合算法:madgwickAHRS。计算物体姿态用的。OpensourceIMUandAHRSalgorith...

gpt4参数?

gpt4将采用1.64英寸AMOLED屏幕,屏幕为2.5D曲面玻璃,分辨率达到了280×456像素,PPI为326,屏占比达到了70%。手表配备了6轴IMU传感器(加速度计,陀螺仪,心率...

hjc旗下头盔品牌cirrus?

Cirrus不是hjc旗下头盔的品牌,cirrus智能骑行安全气囊服由总部位于巴黎的初创企业UrbanCircus打造。该骑行服在防水、防风、且透气的聚酯外层材料基础上,...

OPPO Reno4系列拍视频为啥那么稳?

要说OPPOReno4系列拍视频稳,肯定要说回OPPO独家技术:UltraSteady视频超级防抖。这个技术最早在去年年中发布的OPPOReno2上出现,作为第一代技术,OP.....

展开全部内容