上海羊羽卓进出口贸易有限公司

未来传感器 再提发展传感器,未来6年是关键机遇期!权威期刊最新分析

发布时间:2024-11-24 13:11:39

再提发展传感器,未来6年是关键机遇期!权威期刊最新分析

近年来,我国日益重视智能传感器产业发展,智能传感器重要制造技术——MEMS(微机电系统),被列入“十四五”规划重要攻关技术里面,各地方省市也纷纷出台扶持智能传感器产业发展的政策。

传感器专家网https://www.sensorexpert.com.cn

专注于传感器技术领域,致力于对全球前沿市场动态、技术趋势与产品选型进行专业垂直的服务,是国内领先的传感器产品查询与媒体信息服务平台。基于传感器产品与技术,对广大电子制造从业者与传感器制造者提供精准的匹配与对接。

今年3月份,《经济导刊》刊发了由米菽(启元实验室)、房超(启元实验室、清华大学高技术实验室研究员)及许蔓舒(中信改革发展研究基金会金融实验室咨询专家)撰写的关于我国传感器产业发展宏观观察论文《抓住机遇,加快我国智能传感器产业发展》,再提我国发展传感器产业的重要性和紧迫性,对未来产业发展有什么新的暗示?

论文中认为,未来6年是国产传感器发展机遇期,我国应抓紧加快发展我国智能传感器产业 ,部分观点有:

汽车电子领域将是未来智能传感器发展的主赛道之一;利用好通信电子领域需求端将极大推动我国智能传感器技术的发展 ;我国智能传感器产业存在的主要问题是产业规模较小、产业模式单一和产业链有薄弱环节;中国传感器产业的全球占比很小,产业规模占比不足6.2%,这与我国应用市场占全球的比例(41%)极不匹配 ;在国内市场中,智能传感器的国有化率只有30%左右 ;虽然我国应用端企业创新能力强、资源广泛,但无法带动国内智能传感器厂商的技术提升;我国智能传感器企业过分依赖国外代工厂, 国内缺乏自主的IDM企业;我国的智能传感器产业链存在诸多薄弱环节,其中研发是难点、芯片设计是盲点、晶圆制造是卡点……

《经济导刊》是由中国中信集团,面向全国及海内外公开发行的中央级大型中文经济类核心期刊 ,具备重要参考价值。

启元实验室成立于2020年7月,由北京市人民政府设立,为北京市新型研发机构 ,独立事业法人科研单位,依托清华大学运行管理 。实验室聚焦智能科技进行基础理论研究、核心关键技术攻关。设有十余个研究部门,建设若干大型科研支撑基础设施。

论文正文见下文正文。

随着物联网、5G技术的发展,智能感知互联时代已经到来。智能传感器是智能感知的前端设备,是我国工业实现“由大变强”的必经途径。目前智能传感器产业还处在初期发展阶段,预计智能传感器技术的井喷式发展期将在未来6年内出现,这将是我国智能传感器发展的机遇期。我国可抓住这个时间窗口,加快智能传感器全产业链发展,从而推动我国在“卡脖子”的关键技术方面有所突破。

我国起步晚,智能传感器的应用前景广阔

智能传感器是指将传感器与微处理器相结合,同时具有信号监测和信息处理功能的传感器,其核心技术在芯片①。

早在1979年,美国宇航局(NASA)就提出了智能传感器的概念,但直到进入21世纪后,随着5G通信的商用化,智能传感技术才得到快速发展,并逐渐形成产业化。

我国传感器的发展起步较晚。 1974年,我国研制出首个传统式压力传感器。进入20世纪90年代,我国传感器行业进入高速发展期,传感器技术取得了显著进步。

21世纪初,我国在智能传感器领域的研究不断深入,采用混合集成技术研制出较为实用的智能传感器。

2010年,我国初步建立起智能传感器标准框架体系。随后,我国政府发布了多项涉及智能传感器的政策,特别是2013年工信部等四部委颁布的《加快推进传感器及智能化仪器仪表产业发展行动计划》和2017年工信部推出的《智能传感器产业三年行动指南(2017-2019)》,明确了我国智能传感器的发展目标和方向。

随着政策的引导作用不断加强,我国在智能传感器技术研发方面实现了一定的突破,已形成了完整产业链,并在封装测试等部分环节达到了国际水平,但在芯片研发设计和晶圆制造环节,与欧美日等智能传感器强国还存在明显差距。

智能传感器是联接物理世界与数字世界的桥梁,在民用和军事上有重要的应用前景。

民用方面 ,智能传感器作为万物互联的核心基础,广泛应用于物联网、智慧医疗、智慧城市、智能制造、智能汽车、人工智能等多个领域。

军事应用方面 ,智能传感器在装备测量与控制等系统中发挥重要作用,包括各型导弹或弹药、飞机、舰船、坦克等武器装备系统,以及后勤保障系统、作战指挥系统等,在未来的高技术战争中将深刻影响或改变作战方式,大幅度提高精确打击能力、指挥控制能力和战场管理能力。

随着信息技术的持续进步,智能传感器的效能将不断提高,应用领域不断拓展。总之,智能传感器已经成为国防建设、工业转型升级以及保障和提高人民生活质量等必不可少的基础核心技术和装备。

我国智能传感器产业发展面临重要机遇:未来6年是重要机遇期

根据赛迪顾问的数据资料①,目前全球智能传感器市场规模在整体传感器(传统传感器和智能传感器)的占比和市场规模并不大,还处在初期发展阶段(图1)。

2018年,传感器全球市场规模为1393.2亿美元,而智能传感器仅为283.3亿美元,占比20.3%。虽然智能传感器的占比逐年增加,但增长率并不高;预计到2023年,智能传感器的占比将增加到24%,复合年增长率在3%左右。

这说明智能传感器技术尚处于初期发展阶段,在智能传感器这条赛道上,各国都面临有待突破的技术瓶颈,还没形成技术垄断或取得技术龙头地位的实力。

综合考虑全球对智能传感器研发的高投入以及社会对物联网的高需求,可以判断,未来6年将出现智能传感器技术的井喷发展。由此而言,未来6年也将是我国智能传感器发展的机遇期。

图1 全球传感器及智能传感器市场规模①

我国是全球智能传感器的最大应用市场

我国智能传感器的应用市场规模巨大,是全球最大的应用市场。

根据前瞻产业研究院2022年的数据②(图2),2020年中国智能传感器应用市场规模为148亿美元,占全球市场的41%左右。 虽然中国的应用市场在全球占比正在逐年下降,但我国智能传感器应用市场较为成熟,相比其他新兴市场较为稳定。

鉴于近年来有大量新兴市场快速崛起,特别是第三世界国家对智能传感器的需求增长迅速,我国企业如果能结合“一带一路”倡议拓展更多海外市场,将更好地促进我国智能传感器产业发展。

图2 中国智能传感器市场规模①

我国智能传感器的应用市场结构均衡

智能传感器最终应用领域主要分为消费电子、汽车电子、工业电子和医疗电子。 与全球智能传感器应用领域市场结构有所不同,我国智能传感器应用领域的市场结构较为均衡。

从全球应用市场来看,消费电子是智能传感器市场规模最大的应用领域。 2019年,全球消费电子领域的市场占比为79%左右,占据最主要地位。

由于我国的工业结构较为完整,在各类市场领域有较为成熟的产业化发展。目前我国拥有41个工业大类、207个工业中类和666个工业小类,是全世界唯一拥有联合国产业分类中全部工业门类的国家。这使得我国智能传感器在消费、汽车、工业、医疗电子四大领域占比均衡。即使对某些特殊需求的智能传感器,如生物型传感器、特殊气体传感器等,我国也有相当的市场可支撑其产业发展。

汽车电子、通信电子是我国智能传感器最具发展潜力的细分市场

汽车电子领域是我国最大的智能传感器市场规模贡献者。 我国汽车工业发展迅猛,2021年中国机动车保有量为4.0亿辆,年复合增长率为6.3%左右。这使得智能传感器在汽车领域应用广泛,预计未来市场规模占比将进一步增加。

目前,一辆普通家用型轿车内大约安装几十到近百只传感器,其中相当一部分是智能传感器,对温度、压力、位置、距离、加速度、流量、湿度、电磁、电光、气体及振动等各种信息进行实时准确的测量和控制。随着汽车自动驾驶技术的进一步发展,智能传感器的数量也将进一步增加。汽车电子领域将是未来智能传感器发展的主赛道之一。

通信电子领域,随着我国5G技术的高度发展,市场占比尤为可观,这是我国市场结构最为独特的一点。通信技术是当代发展最为迅猛的高新技术,根据Dell'Oro Group的数据①,2020年,全球通信设备市场规模达到925亿美元,年均复合增速预计为4%左右。

中国通信行业处于世界领先水平,在全球通信市场竞争中,华为一家独大。智能传感器作为通信技术中不可缺少的元器件,未来将与通信技术同步发展。利用好通信电子领域需求端将极大推动我国智能传感器技术的发展。

我国智能传感器产业存在的主要问题

我国是智能传感器领域的后起之秀,在产业结构上形成了包括芯片设计、制造、封装测试、软件、应用等环节的完整产业链。但相比欧美,我国智能传感器产业存在的主要问题是产业规模较小、产业模式单一和产业链有薄弱环节。

我国智能传感器产业规模小,应用端市场国产化率低

赛迪顾问2020年全球智能传感器产业结构数据表明①(图4),智能传感器产业主要由美、日、欧主导,北美地区智能传感器产业规模占全球产业的43.3%左右,处于绝对主导地位。

对比而言,中国传感器产业的全球占比很小,产业规模占比不足6.2%。这与我国应用市场占全球的比例(41%)极不匹配。 说明我国智能传感器制造水平与世界强国相比还存在较大差距,还有很大的发展空间。

在国内市场中,智能传感器的国有化率只有30%左右 。近年来我国市场智能传感器的国产化率稳步提升,2016年,国内厂商智能传感器总产值约占13%,2020年提升到31%,年复合增长率约为24%,远高于行业增速。

但国内应用端企业倾向选择购买外国产智能传感器产品的态势没有根本改变。这就导致:虽然我国应用端企业创新能力强、资源广泛,但无法带动国内智能传感器厂商的技术提升。 未来随着国内厂商技术持续迭代、产品线进一步丰富、市场认知度持续提升,智能传感器市场国产化率也有望进一步提高。

图4 全球智能传感器产业结构①

我国智能传感器企业过分依赖国外代工厂, 国内缺乏自主的IDM企业

智能传感器行业的特点,是技术壁垒较高,细分环节多而分散。

从全球范围看,欧美是智能传感器的制造霸主,占据全球近一半的市场份额,例如著名的霍尼韦尔公司、楼氏电子等。 而欧美在传感器产业中的优势主要集中在垂直整合制造(IDM)型公司上,其最大的优点在于可以使得设计、制造等环节协同优化,充分发掘技术潜力,更有条件率先实验并推行新的智能传感器技术。欧美的IDM型公司在芯片设计、软件开发等环节中占垄断地位,中国公司很难与其竞争。

而我国智能传感器的设计与生产,是以无工厂芯片供应商(Fabless)模式的公司为主,几乎没有IDM型公司。Fabless模式只负责芯片的电路设计与销售,将制造、测试、封装等环节外包,这种模式虽然可以使芯片设计企业以轻资产模式快速成长,但外协加工带来了供应链管理的不确定性,使我国智能传感器企业过分依赖于代工厂(Foundry)供应商。

上游供应商绝大部分都在国外 ,包括芯片制造、半导体材料、晶圆生产设备、电子设计自动化(EDA)和知识产权(IP)等,这将严重影响我国传感器产业链的安全性。

我国智能传感器产业链存在薄弱环节

智能传感器产业链包括研发、芯片设计、晶圆制造、封装测试、软件与芯片解决方案、应用这六个环节。我国的智能传感器产业链存在诸多薄弱环节,其中研发是难点、芯片设计是盲点、晶圆制造是卡点。

研发环节是整条产业链中技术难度最大的环节。 在这一环节上,全球都是由高校和大型研究机构给予技术支持。在我国,科研支持机构包括北京大学、清华大学、东南大学等高校,以及上海微系统与信息技术研究所、苏州微纳中心等科研机构,这些科研机构建立了智能传感器中试服务平台。不过,如何转化高校和研究所的成果是该环节最主要的问题。

芯片设计环节主要指以集成电路、超大规模集成电路为目标的设计流程,涉及多种学科、多种理论、多种材料、多种工艺及现场使用条件,技术壁垒极高。全球芯片设计行业目前被欧美牢牢掌控,国内专注于此环节的公司很少,而且国内尚无一套具有自主知识产权的真正好用的传感器芯片设计EDA软件。

晶圆制造环节是目前我国智能传感器产业的卡脖子环节。晶圆制造环节分为晶圆材料的制备和芯片加工两个步骤,对工艺及设备要求非常高,投入资金巨大。晶圆生产成本投资额中,晶圆设备及技术专利等占据主要成本。

中国内地仅有7家具有晶圆生产线的公司,且产能有限。华润上华科技有限公司、中芯国际集成电路制造有限公司、上海先进半导体制造股份有限公司等国内企业,尽管硬件条件与国际水平相近,但是工艺技术和经验无法达到国外工厂规模生产的标准。

促进我国智能传感器产业发展的努力方向

未来6年是智能传感器技术突破的关键期。 我国应抓住这个时间窗口,加强政策引导,利用好市场需求,转变智能传感器的生产模式,加紧补足产业链薄弱环节,通过智能传感器全产业链的发展推动我国在“卡脖子”的关键技术方面有所突破。

第一,将智能传感器列为国家优先发展的产业,制定智能传感器产业发展规划。 出台相应的针对性鼓励政策,指导科技研发在电子设计自动化(EDA)软件、硅晶材料制备、芯片加工设备等关键技术环节实现突破,补足晶圆制造和软件开发等产业链薄弱环节。

第二,以汽车和通信领域的应用需求为牵引,带动智能传感器全产业链的发展。 充分利用好世界第一大的市场需求,特别是汽车和通信两大细分领域,鼓励应用端企业采用国产智能传感器,提升国产化率。刺激国内上游企业在研发设计和生产制造环节持续投入研发,实现快速发展。

政府可以通过专项基金和税收优惠等方式扶持部分试点智能传感器供应商 ,引导应用端企业优先与试点公司合作。另外,地方政府也可牵头建设智能传感器供应商信息平台,为应用端企业选择国产供应商提供便利。

第三,转变我国智能传感器产业的生产模式,推动建设IDM模式的产业集群。 缺少IDM模式公司,这是我国智能传感器产业的明显短板。由于我国智能传感器产业起步晚,短时间内形成IDM模式公司过于困难。

以欧美日的经验来看,可依托目前现有的高技术产业或科技园区,由政府引导智能传感器龙头企业入驻,进行产学研结合,进而吸引更多初创企业加入园区,最终形成从产业链上游研发机构到下游应用端企业都包含在内,具有IDM模式生产能力的智能传感器产业园区。

这8项关键传感器技术,每一项都将深刻影响未来产业发展

近10年,智能手机、智能手表、无人机等技术迅速进入我们的生活,而未来10年,各种可穿戴设备、物联网设备、机器人、自动驾驶等将融入我们的生活。

这其中,作为这些科技的技术基石之一,传感器技术既推动着科技的发展,而这些科技也重新定义了对未来传感器技术的需求:更微型、更集成、更智能、更低功耗……

未来,哪些技术推动着传感器继续往前发展? 本文总结了传感器发展的8大关键技术,或许有所启发。

传感器专家网https://www.sensorexpert.com.cn

专注于传感器技术领域,致力于对全球前沿市场动态、技术趋势与产品选型进行专业垂直的服务,是国内领先的传感器产品查询与媒体信息服务平台。基于传感器产品与技术,对广大电子制造从业者与传感器制造者提供精准的匹配与对接。

1、采用新原理、新效应的传感技术

传感器是众多高科技的结晶,是众多学科知识交叉的成果,我们基于各种物理、化学、生物的效应和定律,开发了力敏、热敏、光敏、磁敏和气敏等敏感元件后,形成了今天全球多达2.6万余种传感器种类。

因此,开发具有新原理、新效应的敏感元件和传感元件,并以此研制新型传感器,这是发展高性能、多功能、低成本和小型化传感器的重要途径。

以惯性传感器为例,惯性传感器是应用惯性原理和测量技术,检测和测量加速度、倾斜、冲击、振动、旋转和多自由度(DOF)运动的传感器,由加速度计和陀螺仪组成的惯性系统可实现对载体位置及运动信息的实时监测。

不同类型的陀螺仪,由不同的物理原理驱动,如机械式干式、液浮、半液浮、气浮角速率陀螺,挠性角速率陀螺,MEMS 硅、石英角速率陀螺(含半球谐振角速率陀螺)等,主要是利用科里奥利效应(Coriolis effect,指一种在旋转坐标系中移动的物体发生偏转的现象(科氏力正比于输入角速率)。

而在于光纤角速率陀螺、激光角速率陀螺等传感器技术,主要利用另一种原理:萨格纳(Sagnac)原理,也称萨氏效应(相位差正比于输入角速率)

这些新原理、新效应对促进传感技术发展,以及开拓更多传感器应用领域起到关键作用。

同时,交叉学科新技术,也对传感技术发展起到重要作用。譬如集成电路技术对传感器的发展,在MEMS传感器中,高性能专用集成电路(ASIC)可将成千上万的晶体管电路集成于一块芯片,降低环境因素及寄生参数对传感器性能的影响,大幅度提升 MEMS 传感器的精度。

▲MEMS声学传感器构造图(来自歌尔微招股书)

量子传感器 是量子技术的重要应用场景之一,此前,美国国家科学和技术委员会(NSTC)就发布了关于量子传感器的国家战略《将量子传感器付诸实践》

利用量子力学 中的有关效应,可设计、研制量子敏感器件,像共振隧道二极管、量子阱激光器和量子干涉部件等,具有高速(比电子敏感器件速度提高 1000倍〕、低耗(比电子敏感器件能耗降低 1000 倍)、高效、高集成度、经济可靠等优点。

纳米电子学 的发展,也将会在传感技术领域中引起一次新的技术革命。利用纳米技术制作的传感器,尺寸减小、精度提高、性能大大改善,纳米传感器是站在原子尺度上,从而极大地丰富了传感器的理论,推动了传感器的制作水平,拓宽了传感器的应用领域。

2、传感器微型化和芯片化技术

传感器微型化和芯片化技术,主要有MEMS工艺和新一代固态传感器微结构制造工艺 等,其中,MEMS工艺已在传感器广泛应用。

微机电系统(MEMS) 是集微机构、微传感器、微执行器、控制电路、信号处理、通信、接口、电源等于一体的微型系统或器件,是对微/纳米材料进行设计、加工、制造、测量和控制的技术。

MEMS 材料 包括功能材料(通常是以硅为主体的半导体材料)、结构材料(如压电材料、超磁致材料、光敏材料等)和智能材料(以形状记忆合金为主)。

MEMS 工艺的关键技术包括:深反应离子刻蚀、LIGA 技术、分子装配技术、体微加工、表面微加工、激光微加工和微型封装技术 等。

其中,硅微机械加工工艺是 MEMS 主流技术,它是一种精密三维加工技术,是研制传感器、微执行器、微作用器、微机械系统的核心技术,已成功用于制造各种微传感器以及多功能的敏感元阵列,如微硅电容传感器、微硅质量流量传感器,航空航天用动态传感器、微传感器,汽车专用压力、加速度传感器,环保用微化学传感器等。

深反应离子刻蚀(DRIE)是 MEMS 结构加工的重要工序之一 ,主要用于多晶硅、氮化硅、二氧化硅薄膜及金属膜的刻蚀,属一种微电子干法腐蚀工艺。

LIGA 技术即光刻、电铸和注塑 ,是利用深度 X 射线刻蚀,通过电铸成型和塑料铸模,形成深层三维微结构的方法。

▲MEMS陀螺仪结构

当前,为了适应 MEMS 技术的发展,已开发了许多新的 MEMS 封装技术和工艺,如阳极键合、硅熔融键合、共晶键合等。MEMS 封装通常分为以下几个层次:裸片级封装、器件级封装、硅圆片级封装、单芯片封装和系统级封装。

单芯片封装(SCP)属于器件级封装的范畴 ,是指在一块芯片上制作保护层,将易损坏的元器件和电路屏蔽起来,避免环境对其造成不利的影响,并制作有源传感器/制动器的通路,实现与外部的电接触,以满足器件对电、机械、热和化学等方面的技术要求。

多芯片组件(MCM)是电子封装技术的一大突破,属于系统级封装 。MCM 把两个及以上的 IC/MEMS 芯片或 CSP 组装在一块电路板上,构成功能电路板,即多芯片组件,为组件中的各个芯片(构件)提供信号互连、I/O 管理、热控制、机械支撑和环境保护等。MCM 具有在同一衬底上支持多种芯片的能力,而不需要改变 MEMS 和电路的制造工艺。

3、传感器阵列和多传感参数复合的集成技术

此类集成技术,包括集成工艺和多变量复合传感器微结构集成制造工艺,工业控制用多变量复合传感器 等,如压力、静压、温度三变量传感器,气压、风力、温度、湿度四变量传感器,微硅复合应变压力传感器,阵列传感器。

集成化是指多种传感功能与数据处理、存储、双向通信等的集成 ,可全部或部分实现信号探测、变换处理、逻辑判断、功能计算、双向通讯,以及内部自检、自校、自补偿、自诊断等功能,具有低成本、高精度信息采集、可数据存储和通信、编程自动化和功能多样化等特点。

传感器集成化有两种: 一种是通过微加工技术在一个芯片上构建多个传感模块,组成线性传感器(如 CCD 图像传感器)一种是将不同功能的敏感元器件制作在同一硅片上, 制成集成化多功能传感器,集成度高、体积小,容易实现补偿和校正。

微加工技术和精密封装技术对传感器的集成化有重大的影响。

多传感器信息融合综合了传感器应用技术、数据处理技术、计算机软硬件技术和工业化控制技术。

它采用计算机技术进行分析,消除多传感器信息之间可能存在的冗余和矛盾,加以互补,降低其不确实性,获得被测对象的一致性解释与描述,具有容错性、互补性、实时性、经济性等优点。

4、传感器数字化和智能化技术

智能化技术与智能传感器信号有线或无线探测、变换处理、逻辑判断、功能计算、双向通讯、自诊断等智能化技术;智能多变量传感器,智能电量传感器和各种智能传感器、变送器。

数字传感器包括调节和处理信号的电路及一个网络通讯的界面。 它们通常以模块形式制成,包含传感器、DSP(数字信号处理器)、DSC(数字信号控制器)或 ASIC(特定用途集成电路),另外也有以系统封装或系统芯片的方式制成。用于驱动数字输出的电子元件通常有三种:机械继电器、晶体管和双向 FET 器件。

智能化传感器是指 采用硬件软化、软件集成、虚拟现实、软测量等人工智能技术研发的具有拟人智能特性或功能的传感器,同时是一种具有独立探测和信号处理与转换能力的、能够自检的、有通信功能的主动式传感系统。

智能传感器的典型代表是高性能的智能工业变送器。 如日本横河电机的 EJA系列智能变送器,ABB 公司的 MV2000T 系列多功能差压/压力变送器,Rosemount公司的 3095MV 多参数质量流量变送器,分别采用硅谐振传感器、复合微硅固态传感器和高精度电容传感器作为敏感元件,精度达到 0.1075%,具有很高的稳定性和可靠性,十年内不用调零。

5、传感器的强环境适应性技术

我们知道,从汽车到工业,从医疗到航空航天,从家电到测试和测量,传感器无处不在,很多行业应用都对传感器的环境适应性有着很高的要求。譬如,2004年被用于火星探测车“勇气号”和“机遇号”的德国某公司生产的磁阻传感器,能在+270℃到-133℃的温度范围之内正常工作。

传感器产品的强环境适应性测试包括电气安全实验、失效分析实验、腐蚀性气体实验、环境性能实验、材料实验等

传感器封装材料与技术的进步,使得传感器的环境适应能力越来越强。

金属基复合材料封装(AI/Si Cp), 通过改变增强体的种类、排列方式或改变基体的合金成分,或改变热处理工艺等,来实现材料的物理性能设计;或者通过改变热处理工艺,来改变基体与增强体的界面结合状况,进而影响材料的热性能。该类材料热膨胀系数较低,既能做到与电子元器件材料的热膨胀系数相匹配,又具有高导热性和低密度。

塑料封装 90%以上使用环氧树脂,具有大规模生产、可靠性与金属或陶瓷材料相当的优点。 经过硫化处理的环氧树脂还具有较快的固化速度、较低的固化温度和吸湿性、较高的抗湿性和耐热性等特点。

陶瓷封装是用粘接剂或焊料将一个或多个芯片安装在陶瓷底板或管座上 ,采用倒装焊方式与陶瓷金属图形层进行键合,再对封装体进行封盖密封,同时提供合适的电气连接。

陶瓷具有很高的杨氏模量、较高的绝缘性能和优异的高频特性,有良好的可靠性、可塑性且易密封,其线性膨胀系数与电子元器件的非常相近,化学性能稳定且热导率高,被用于多芯片组件、焊接阵列等封装中。

6、无线传感器网络技术

无线传感器网络(WSN),是由大量静止或移动的具有感知、无线通信与计算能力的传感器构成的多跳自组织网络系统,能根据环境自主完成指定任务。

大量传感器通过网络构成分布式、智能化信息处理系统,从多种视角、以多种模式协作地对网络覆盖区域内的事件、现象和环境实时进行监测、感知、采集、分析,获得丰富的、高分辨率的信息,并对这些信息进行处理和传输,发送给观察者。

传感器、感知对象和观察者构成了无线传感器网络的三个要素。 无线传感器网络(WSN)包含传感器单元、控制器和无线通信模块,实现数据采集、近距离通信、数据计算和远距离无线通信等功能。

WSN 综合了传感器技术、嵌入式操作系统技术、分布式信息处理技术、无线通信技术、能量收集技术、低功耗技术、多跳自组织网络的路由协议、定位技术、时间同步技术、数据融合和数据管理技术、信息安全技术、网络传输技术,关键是克服节点资源限制(能源供应、计算及通信能力、存储空间等),并满足传感器网络扩展性、容错性等要求。

该技术被美国麻省理工学院(MIT)的《技术评论》杂志评为对人类未来生活产生深远影响的十大新兴技术之首

7、传感器数字通信总线技术

现场总线技术是一种集计算机技术、通信技术、集成电路技术及智能传感技术于一身的新兴控制技术 ,是安装在制造和过程区域的现场装置与控制室内的自动控制装置之间的数字式、串行、多点通信的数据总线,是一种全数字化、开放式、双向传输、多分支、多站的通信系统,是现场通信网络和控制系统的集成。

▲基于现场总线的智能传感技术简图

现场总线的关键标志是支持全数字通信 ,在控制现场建立一条高可靠性的数据通信线路,实现各智能传感器之间及智能传感器与主控机之间的数据通信,把单个分散的智能传感器变成网络节点。

现场总线智能传感器需有以下功能 :共用一条总线传递信息,具有多种计算、数据处理及控制功能,从而减少主机的负担;取代 4-20mA 模拟信号传输,实现传输信号的数字化,增强信号的抗干扰能力;采用统一的网络化协议,成为 FCS的节点,实现传感器与执行器之间信息交换;系统可对之进行校验、组态、测试,从而改善系统的可靠性;接口标准化,具有即插即用特性。

现场总线智能传感器是未来工业过程控制系统的主流仪表。

8、传感器的应用技术

传感器的应用技术是指将传感器应用于下游器件、场景的各种技术的统称,单独的传感器往往并不能发挥应有的作用。

这些技术包括:信号处理和接口技术;降噪与抗干扰技术;显示与调节仪表;测量及误差处理;传感器的选择与安装调整技术;位移、力、扭矩、荷重、速度、加速度等机械量的检测技术;温度、压力、流量、物位等过程量的检测技术;湿度检测与气体分析技术;探测、成像与安全防范技术;智能化与自动测试技术;接近传感器、压力传感器、感应同步器的安装技术;红外、超声波、微波探测防盗报警器的安装技术等等。

对于消费类应用来说,传感器融合的主要技术难度是如何控制产品的尺寸 ,合理测试每个传感器的性能,控制整个芯片的良品率并降低成本。

对于工业、军工、汽车、医疗等领域的传感器融合来说,还要考虑如何保证在各种工作情况下的精度、可靠性,利用融合的特性 来实现传感器之间的补偿校正等。

传感器电路的内部噪声包括电路板电磁元件干扰、低频、高频热、半导体器件散粒晶体管、电阻器、集成电路噪声等,外部干扰包括电源、地线、长线信号传输、空间电磁波等。

因此,在电路设计中需要根据不同的工作频率合理选择低噪半导体元器件,并根据不同的工作频段、参数选择适当的放大电路。

结语

传感器虽小,但其背后却撬动着工业自动化、机器人、自动驾驶、物联网等等数万亿级的市场 ,是真正关系国计民生的关键技术领域!

文中的8项传感器关键共性技术,是未来传感技术发展的重要基石,透过这些技术方向,抢占产业发展主导权,缩小我国与国外传感器技术差距。

但同时,我们更应注意到,我国传感产业里技术与产业脱节的情况,即技术研发在高校在研究所,而落实传感器产业发展的是广大中小传感器企业,如何将实验室里的技术与广大中小传感器企业联合,做好技术产业化,与传感器技术的研发同样重要。

相关问答

传感器 未来 发展趋势?

随着物联网的高速发展,人们对于传感器技术的需求不断提高,希望实现更多更快速、有效、精准的测量要求。举个例子,以前的人们并不注重度量技术,更在意能否节...

未来 传感设备会开发出嗅觉和味觉 传感器 吗?

会的,但是不会广泛用于你所说的电视上。未来会根据嗅觉味觉的特性制造出相对应的传感器,应该广泛运用于探测(地球的探测和太空探测),嗅觉传感器可以根据气味...

专业选修课学 传感器 是干什么用的?

专业选修课学传感器是为今后毕业设计及今后工作是非常实用的。在自动化,电气控制方向的专业中。比如,检测与转换技术,课内介绍了许多传感器。学时20课,要作结...

可穿戴设备有哪些? 未来 发展前景如何? - 红网问答

现在可穿戴设备大致可以分为四类。‍智能手机派——代表人物:GalaxyGear、SmartWatch作为移动设备的功能补充,须与智能手机等设备配合使用。...

长光辰芯已经研发出全画幅cmos 传感器 ,现在有什么新应用和新产品么?

由于多晶硅覆盖层的引入,使其量子效率比较低,尤其对蓝光更是如此。就目前看来,其整体性能优势并不十分突出。CMOS图像传感器件的应用1.数码相机人们使用胶...

光纤 传感器 和光电 传感器 有什么不同?

光纤传感器与光电传感器,都是以光线作为检测载体,并将光信号转变为电信号,进行计量的传感器,因而容易被混淆。不过,由于二者的工作原理完全不同,因而导致...光...

物联网 未来 2-3年趋势如何?哪些行业有爆发的潜力?

感谢邀请,感谢头条网友关注阅读点赞!什么是物联网?物联网(IoT,Internetofthings)即“万物相连的互联网”,是互联网基础上的延伸和扩展的网络,将...物联...

未来 制造技术发展的趋势是什么

机械制造技术是研究产品设计、生产、加工制造、销售使用、维修服务乃至回收再生的整个过程的工程学科,是以提高质量、效益、竞争力为目标,包含物质...

磁电式速度 传感器 +单片机测速如何设计?_汽配人问答

[最佳回答]51系列的兼容机型推出,今后很长的一段时间内将占有大量市场。51单片机是基础入门的一个单片机,还是应用最广泛的一种。需要注意的是52系列...51单...

宇航与机电类就业前景?

机电一体化专业在机械技术、电脑技术、系统技术、自动技术、传感技术、伺服技术等方面都有涉及,总体前景看好。机电一体化又称机械电子工程,是机械工程与自...

展开全部内容