图像传感器工作原理 CCD图像传感器——颠覆人类记录影像的方式
CCD图像传感器——颠覆人类记录影像的方式
维纳德 • 波利(左)和乔治 • 史密斯(右)在1969年发明了CCD技术
来源:文献[1]
2009年,维纳德 • 波利(Willard S. Boyle)和乔治 • 史密斯(George E. Smith)因为发明CCD(Charge-coupled Device,电荷耦合元件,或称为CCD图像传感器)而获得当年的诺贝尔物理学奖。
诺贝尔奖委员会主席约瑟夫·诺德格伦(Joseph Nordgren)在宣布该奖项的新闻发布会上说:“当今社会的记录影像的方式完全基于CCD的研究。” “这项研究的实际意义是巨大的……它改变了我们的生活,不仅在科学领域,而且在整个社会领域。”
胶片时代
在1975年数码相机发明以前,人们记录影像的方式是使用胶片。它的工作过程可以概述为:光线经过照相机镜头,然后由快门的速度来决定曝光量的多少。光线使胶片上的银盐产生化学反应,最后在胶片上生成影像的潜影。经过暗房里的冲洗形成影像并制成底片。利用调配将底片显影最终印出。
胶片摄影需要经过复杂的处理才能得到影像
[图片来源自网络]
CCD的发明
1969年10月,史密斯和波利在贝尔实验室吃午餐时,讨论产生了灵感。午餐后继续探讨,当天就构想出了CCD这个无处不在的成像发明。不过,从造出样机到研制出科学家和摄影师都可以使用的实用技术,这条路漫长而艰难。尽管CCD后来主宰了天文学领域,但它在刚发明时分辨率非常低,根本派不上实际用场。当时CCD的信噪比很差,不大容易看得出它是否会有远大的前程。
第一个CCD器件
来源:文献[4]
第一个CCD集成器件
来源:文献[4]
早期的线性成像CCD
来源:文献[4]
在接下来的时间里,成百上千的科学家和工程师努力奋斗,逐步将CCD推向实用化,包括美国的仙童(Fairchild)、柯达泰克(Tektronix)和德州仪器(Texas Instruments,TI),以及日本的夏普(Sharp)、索尼(SONY)、东芝(Toshiba)和日本电气(NEC)等公司都作出了许多贡献。航天、科学和消费等方面的应用,都得益于为解决CCD问题而从不同渠道投入的经费,但是问题还是很棘手,那是一条非常艰苦的发展之路。
CCD的原理
CCD是一种半导体器件,能够把光学影像转化为数字信号。 CCD上植入的微小光敏物质称作像素(Pixel)。像素数越高,面积越大,成像质量就越高越清晰。CCD上有许多排列整齐的电容,能感应光线、储存信号并将影像转变成数字信号。经由外部电路的控制,每个小电容能将其所带的电荷转给相邻的图像处理器来形成图像。
MOS电容器是构成CCD的最基本单元,它是金属—氧化物—半导体(MOS)器件中结构最为简单的。
MOS电容器
来源:文献[4]
CCD的基本工作过程主要是信号电荷的产生、存储、转移和检测:
(1)信号电荷的注入(产生):在CCD中,电荷注入的方式可分为光注入和电注入两类。当光照射到CCD硅片上时,在栅极附近的半导体体内产生电子-空穴对,多数载流子被栅极电压排斥,少数载流子则被收集在势阱中形成信号电荷。
背照式光注入
来源:文献[8]
所谓电注入就是CCD通过输入结构对信号电压或电流进行采样,然后将信号电压或电流转换为信号电荷注入到相应的势阱中。电注入常用的有电流注入和电压注入两种方式。
电注入方式
来源:文献[8]
(2)信号电荷的存储:CCD工作过程的第二步是信号电荷的收集,就是将入射光子激励出的电荷收集起来成为信号电荷包的过程。
当向SiO表面的电极加正偏压时,P型硅衬底中形成耗尽区(势阱),耗尽区的深度随正偏压升高而加大。其中的少数载流子(电子)被吸收到最高正偏压电极下的区域内,形成电荷包(势阱)。对于N型硅衬底的CCD器件,电极加正偏压时,少数载流子为空穴。
电荷存储
来源:文献[8]
(3)信号电荷的传输(耦合):CCD工作过程的第三步是信号电荷包的转移,就是将所收集起来的电荷包从一个像元转移到下一个像元,直到全部电荷包输出完成的过程。
电荷转移
来源:文献[7]
三相CCD中电荷的转移方式
(a)初始状态;(b) 电荷由①电极向②电极转移;(c) 电荷在①、②电极下均匀分布;(d) 电荷继续由①电极向②电极转移;(e) 电荷完全转移到②电极;(f) 三相交叠脉冲
来源:文献[8]
(4)信号电荷的检测:CCD工作过程的第四步是电荷的检测,就是将转移到输出级的电荷转化为电流或者电压的过程。
其中电荷输出类型,主要有三种:1)电流输出;2)浮置栅放大器输出;3)浮置扩散放大器输出。
电荷检测电路
来源:文献[8]
CCD工作过程示意图
来源:文献[6]
CCD图像传感器是按一定规律排列的MOS(金属—氧化物—半导体)电容器组成的阵列。 在P型或N型硅衬底上生长一层很薄(约120nm)的二氧化硅,再在二氧化硅薄层上依次序沉积金属或掺杂多晶硅电极(栅极),形成规则的MOS电容器阵列,再加上两端的输入及输出二极管就构成了CCD芯片。
按照像素排列方式的不同,可以将CCD分为线阵和面阵两大类。
线阵CCD每次扫描一条线,为了得到整个二维图像的视频信号,就必须用扫描的方法实现。线阵CCD又分为单沟道线阵CCD和双沟道线阵CCD。
单沟道线阵CCD:转移次数多、效率低。只适用于像素单元较少的成像器件。
双沟道线阵CCD:转移次数减少一半,它的总转移效率也提高为原来的两倍。
线阵CCD
来源:文献[6]
面阵CCD:按照一定的方式将一维线阵CCD的光敏单元及移位寄作器排列成二维阵列。就可以构成二维面阵CCD。面阵CCD同时曝光整个图像。
帧转移面阵CCD——优点:电极结构简单,感光区面积可以很小。缺点:需要面积较大暂存区。
帧转移面阵CCD结构及工作过程
来源:文献[6]
隔列转移面阵CCD——优点:转移效率大大提高。缺点:结构较为复杂。
隔列转移面阵CCD结构及工作过程
来源:文献[6]
CCD功能示意图
来源:文献[7]
CCD芯片结构
图片来源自网络
CCD的发展
CCD的发明具有划时代的意义,它的出现使得人类捕捉信息达85%的眼睛这个重要器官得到了极大扩展与延申。
促进CCD快速发展主要有三个因素:首先,CCD的尺寸小,重量轻,消耗功率少,超低噪声,动态范围较大,线性良好,可靠,耐用。第二,这种器件在形状、快速、外形质量和成本方面能与真空管抗衡。第三,空间成像应用需要新的探测器。
20世纪70年代,美国贝尔实验室成功研制了世界上第一只CCD,它的诞生使成像、摄像等技术呈现一次飞跃。1973年,仙童公司把CCD技术应用于商业领域,制造出第一只商用CCD成像器件,这开辟了CCD在工业领域的道路。80年代后期,CCD在大多数视频应用中取代了电子管。进入90年代后,CCD应用于分辨成像,广泛应用于专业电子照相、空间探测、X射线成像及其他科研领域。
两种CCD产品
图片来源自网络
市场应用的结果证明CCD是科学领域的一项重大技术变革。它在被忽视数十年之后,能获得2009年的诺贝尔奖可谓实至名归。
变革不停
但是,科学技术的进步一刻也不曾停止。1998年,CMOS图像传感器(Complementary Metal-Oxide-Semiconductor Image Sensor,CIS)诞生了。CMOS的光电信息转换功能与CCD的基本相似,区别就在于这两种传感器的光电转换后信息传送的方式不同。CMOS具有读取信息的方式简单、输出信息速率快、耗电少(仅为CCD芯片的1/10左右)、体积小、重量轻、集成度高、价格低等特点。从2008年开始,各大厂商都开始逐渐把背照式CMOS使用在不同的数码相机产品上。从此,CMOS图像传感器迅速发展。
CMOS取代CCD
图片来源自网络
科技不断发展,相信在未来的某一天,一定会有更多种类的传感器出现,这也只是时间的问题,到那时我们回望过去,看看我们曾经经历过的胶片时代、CCD时代和CMOS时代,一定会由衷的感叹科技日新月异的飞速发展。
参考文献
https://www.nobelprize.org/prizes/physics/2009/summary/
张汝京. 半导体产业背后的故事[M]. 清华大学出版社, 2013.
董艺婷. 摄影技术的发展及对当代社会的作用研究[D].哈尔滨师范大学,2016.
Smith, G. E. (2009). "The invention and early history of the CCD." Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 607(1): 1-6.
https://www.microscopyu.com/digital-imaging/introduction-to-charge-coupled-devices-ccds
https://www.mega-9.com/tech/tech-45.html
https://specinstcameras.com/what-is-a-ccd/
王庆有. 图像传感器应用技术[M]. 电子工业出版社, 2019.
https://www.docin.com/p-505990925.html
http://dc.yesky.com/88/31913588all.shtml
转载内容仅代表作者观点
不代表中科院物理所立场
来源:中科院半导体所
编辑:荔枝果冻
CMOS Sensor(图像传感器)的工作原理
Sensor(图像传感器)是将光信号转换为电信号的装置,CMOS图像传感器本质是一块芯片,主要包括:感光区阵列(Bayer阵列,或叫像素阵列)、时序控制、模拟信号处理以及模数转换等模块。
CMOS Sensor的像素结构目前主要有无源像素图像传感器和有源像素图像传感器两种 。
被动式像素结构(Passive Pixel Sensor.简称PPS),又叫无源式。它由一个反向偏置的光敏二极管和一个开关管构成。光敏二极管本质上是一个由P型半导体和N型半导体组成的PN结,它可等效为一个反向偏置的二极管和一个MOS电容并联。当开关管开启时,光敏二极管与垂直的列线(Column bus)连通。位于列线末端的电荷积分放大器读出电路(Charge integrating amplifier)保持列线电压为一常数,当光敏二极管存贮的信号电荷被读出时,其电压被复位到列线电压水平,与此同时,与光信号成正比的电荷由电荷积分放大器转换为电荷输出。
主动式像素结构(Active Pixel Sensor.简称APS),又叫有源式。几乎在CMOS PPS像素结构发明的同时,人们很快认识到在像素内引入缓冲器或放大器可以改善像素的性能,在CMOS APS中每一像素内都有自己的放大器。集成在表面的放大晶体管减少了像素元件的有效表面积,降低了“封装密度”,使40%~50%的入射光被反射。
下面为大家介绍CMOS Sensor的结构及工作原理:
CMOS sensor内部结构CMOS传感器上的主要部件是像素阵列,这是其与传统芯片的主要区别。每个像素的功能是将感受到的光转换为电信号,通过读出电路转为数字化信号,从而完成现实场景数字化的过程,像素阵列中的每个像素结构是一样的。
2. CMOS sensor整个平面构造图(floorplan)
光电二极管具有正向导通反向截止的特殊,反向的特性还有个电容的特性,当在二极管上加反向偏置电压时,就会给电容充电,当电容充满电荷之后,光子的射入会导致内部激发出新的电子空穴对,与原来充电形成的电子空穴对进行配对放电,形成光电流I_ph,光电流I_ph给右侧的电容充电变成一个电压输出,
3.光子(Photon)与量子效率(quantum efficiency)
自然界中有不同频率的光线,如果我们简单来说分成RGB三种频率的光线,由于RGB的频率不同,所载有的能量也是不同的,以蓝光子为例,所载有的能量为4.41E-19焦耳,单个光子的能量E=hc/普朗克常量,那么一束光子的能量就等于所有光子能量的总和Total_Power=sum_of(allphotons)。量子效率QE定义为,在一个camerasensor里面,经过color filter透射过来的光子转变成电荷的的效率,如果透射过来三个光子,产生出来一个电子空穴对,那么这个效率就是1/3.
4.与量子效率QE有关的几个重要概念
QE是衡量某个颜色通道某个频率/波长的光子转换成电子的效率在不同的波长上QE是不一样的。
camera sensor可以感受近红外的波段,这个不符合人眼视觉的感受的,需要用IR cut把近红外的波段去除掉,否则红色通道感光就会过强,这样出来的图像就会偏红。
像素不能够被一个颜色的光激发的现在叫crosstalk,理想情况crosstalk为0。
sensitivity感光度:同样的光子能够激发出的电荷sensitivity=QE*pixel_size QE越高激发出来的电荷越多,pixel_size越大激发出来的电荷越多
5.感光过程
CMOS传感器中每一个感光元件都直接整合了放大器和模数转换逻辑,当感光二极管接受光照、产生模拟的电信号之后,电信号首先被该感光元件中的放大器放大,然后直接转换成对应的数字信号。
6.读取过程
7.动态范围
目前,CMOS是高速成像所青睐的技术。在当前市场中,我们可以发现高速图像传感器有三大发展趋势,一是向极高速方向发展,二是向片上特性集成方向发展,三是向通用高速图像传感器方向发展。
相关问答
汽车 传感器 的 原理 是什么?[最佳回答]汽车传感器的工作原理是将汽车的各种工况信息进行转换,如车速、各种介质的温度、发动机的工作状况等。转换成电信号并传送给计算机,使发动机处于最...
发动机水温 传感器工作原理[最佳回答]汽车水温传感器原理:1。汽车水温传感器内部是半导体热敏电阻,温度越低电阻越大;反之,阻力越小,阻力越小,阻力越小,阻力越小,阻力越小安装在发动机缸...
光栅 传感器 的基本 原理 是什么?莫尔条纹是如何形成的?我们课本就是这样写的。。。我亲自打出来的,不是复制奥原理:指示光栅与标尺光栅叠放在一起,中间留有适当的微小间隙,并使两块光栅的刻线之间保持一很小的夹角...
凸轮轴位置 传感器工作原理 是什麽 - 汽车维修技术网[回答]据汽车维修网小编的了解不少朋友对一些汽车知识不是很了解的,为方便大家了解这些知识,那么今天汽车维修网小编给大家介绍一下关于凸轮轴位置传感器...
光敏 原理 与使用范围?光敏二极管也叫光电二极管。光敏二极管与半导体二极管在结构上是类似的,其管芯是一个具有光敏特征的PN结,具有单向导电性,因此工作时需加上反向电压。无光照时...
光电效应可分为哪三种类型,能否说明 传感器 的 原理 并分别列出...[最佳回答]光电效应可分为:1、外光电效应:指在光的照射下,材料中的电子逸出表面的现象.光电管及光电倍增管均属这一类.它们的光电发射极,即光明极就是用具有这...
里程表 传感器原理 ?里程表传感器的原理是过去常用的纯机械式仪表,通过一根软轴,一头连到变速箱输出轴,另一头连到里程表,而更常用的电子式仪表,它一般是在变速箱输出轴或车轮上...
光线 传感器 的结构及导光 原理 。?光纤传感器的基本工作原理是将来自光源的光信号经过光纤送入调制器,使待测参数与进入调制区的光相互作用后,导致光的光学性质(如光的强度、波长、频率、相位、...
光学 传感器 ic 工作原理 ?光学传感器工作的基础是光电效应,其材质大多是使用半导材料,它能够吸收到光的照射,从而发生变化。一般来说,光电效应分为两大类,一种是外光电效应,它是指物...
ccd光敏源的 工作原理 ?1.ccd工作原理--简介光感芯片原理:光芯片是用来完成光电信号转换的,相当于信息中转站,它在移动设备上属于一个核心设备,工作原理是是一个将磷化铟的发光属性和...