上海羊羽卓进出口贸易有限公司

CCD传感器类型 简单易懂!三种CCD图像传感器最全介绍来了

发布时间:2025-01-19 16:01:48

简单易懂!三种CCD图像传感器最全介绍来了

CCD的中文全称是电荷耦合元件,是一种半导体成像器件。通过被摄物体的图像经过镜头聚焦至CCD芯片上的原理制成了CCD摄像机,其中的核心原件就是CCD图像传感器。

CCD图像传感器作为一种新型光电转换器现已被广泛应用于摄像、图像采集、扫描仪以及工业测量等领域。作为摄像器件,与摄像管相比,CCD图像传感器有体积小、重量轻、分辨率高、灵敏度高、动态范围宽、光敏元的几何精度高、光谱响应范围宽、工作电压低、功耗小、寿命长、抗震性和抗冲击性好、不受电磁场干扰和可靠性高等一系列优点。

CCD是数码相机的电子眼,它革新了摄影术,光可以被电子化地记录下来,取代了胶片。这一数字形式极大地方便了对图像的处理和发送,”诺贝尔奖评选委员会称赞说,“无论是我们大海中深邃之地,还是宇宙中的遥远之处,它都能给我们带来水晶般清晰的影像。”

CCD图像传感器发展历程

CCD图像传感器于1969年在贝尔试验室研制成功,之后由日商等公司开始量产,其发展历程已经将近30多年,从初期的10多万像素已经发展至目前主流应用的500万像素。CCD又可分为线型(Linear)与面型(Area)两种,其中线型应用于影像扫瞄器及传真机上,而面型主要应用于数码相机(DSC)、摄录影机、监视摄影机等多项影像输入产品上。

发明:

伴随着数码相机、带有摄像头的手机等电子设备风靡全球,人类已经进入了全民数码影像的时代,每一个人都可以随时、随地、随意地用影像记录每一瞬间。带领我们进入如此五彩斑斓世界的,就是美国科学家威拉德·博伊尔和乔治·史密斯发明的CCD(电荷耦合器件)图像传感器。

百多年来,伴随着暗箱、镜头和感光材料制作不断取得突破,以及精密机械、化学技术的发展,照相机的功能越来越强大,使用越来越方便。但是,直到几十年前,人们依然只能将影像记录在胶片上。拍摄影像慢慢普及,但即时欣赏、分享、传递影像还非常困难。1969年,博伊尔和史密斯极富创意地发明了一种半导体装置,可以把光学影像转化为数字信号,这一装置,就是CCD图像传感器。

发展历程:

CCD图像传感器的发明,实际上是应用爱因斯坦有关光电效应理论的结果,即光照射到某些物质上,能够引起物质的电性质发生变化。但是从理论到实践,道路却并不平坦。科学家遇到的最大挑战,在于如何在很短的时间内,将每一个点上因为光照而产生改变的大量电信号采集并且辨别出来。经过多次试验,博伊尔和史密斯终于解决了上述难题。他们采用一种高感光度的半导体材料,将光线照射导致的电信号变化转换成数字信号,使得其高效存储、编辑、传输都成为可能。简单地说,CCD图像传感器就像是胶片一样,有了它,人们就再不用耗时费力地去冲洗胶片了。

三种CCD图像传感器的优缺点

CCD(电荷耦合器件)图像传感器体系可分为全帧(FF)、帧传输(FT)和行间传输(IT)三种CCD架构。

全帧(Full-Frame)CCD

半导体区域既可以作为光电元件,也可以作为电荷转移器件,这有点违反直觉,但这正是FF CCD中发生的事情。在集成过程中,像素位置响应入射光子积累电荷,在集成之后,电荷包垂直地通过像素位置向水平移位寄存器移动。

一般情况下,我们通过应用精心定时的时钟信号来获得CCD像素数据,这些时钟信号依次在器件的电荷传输结构中产生电位阱和电位屏障。在全帧CCD中,我们需要能够将这些控制电压应用到同样起光电探测器作用的区域,因此,栅极电极由透明多晶硅制成。

全帧CCD相对而言比较简单且易于制造,并且它们允许整个CCD表面具有光敏性。这使硅的给定区域中可以包含的像素数量最大化,同时也使每个像素中实际上能够将光子转换为电子的部分最大化。

然而,一个主要的限制是需要一个机械快门(或一个同步的、短时间的光源称为频闪)。CCD的光激活区并不会因为你已经决定是时候执行读出而停止光激活。如果没有在曝光周期完成后阻挡入射光的机械快门,则在(有意)集成期间生成的电荷包将被读出期间到达的光损坏。

这是全帧CCD的基本架构

帧传输(Frame-Transfer)CCD

一般来说,我们更喜欢用电子方式控制曝光,快门(像任何其他快速移动的高精度机械设备一样)使设计更加复杂,最终产品更加昂贵,整个系统更容易出现故障。在电池供电的应用中,驱动物理物体所需的额外能量也是不可取的。

FT-CCD允许我们保持FF-CCD的一些优点,同时(几乎)不需要快门。这是通过将FF CCD分成两个大小相等的部分来实现的。其中一个部分是普通的光敏成像阵列,另一个部分是屏蔽入射光的存储阵列。

在集成之后,用于所有像素的电荷包被快速地传输到存储阵列,然后在存储阵列中发生读出。当读取存储位置时,活动像素可以为下一图像累积电荷,这使得帧传输CCD能够获得比全帧CCD更高的帧速率。

说FT架构几乎消除了快门,因为无快门设计会遇到一个称为垂直涂抹的问题。电荷包从活动像素到存储位置的传输很快,但不是瞬间发生的,因此在垂直传输期间到达传感器的光可以改变图像信息。

FT架构的主要缺点是成本较高,并且相对于图像质量而言面积增大,因为基本上是使用FF传感器,然后将像素数减少两倍。

帧传输CCD在全帧架构中增加了一个存储阵列

线间传输(Interline-Transfer)CCD

我们需要的最后一个主要的架构改进是将集成电荷快速转移到存储区域,从而将污迹降低到可以忽略的程度。线间传输CCD通过提供与每个光活动位置相邻的存储(和传输)区域的网络来实现这一点。曝光完成后,传感器中的每个电荷包同时传输到非光敏垂直移位寄存器中。

因此,它的CCD能够以最小的拖影实现电子快门,并且像FT-ccd一样,它们可以在读出期间集成,从而保持较高的帧速率能力。然而,如果光生电荷在读出过程中从光活性柱泄漏到相邻的垂直移位寄存器中,则可能发生一些涂抹。如果应用程序不需要高帧速率,则可以通过延迟积分直到读出完成来消除此问题。

线间CCD不需要帧传输CCD中使用的大存储部分,但它们引入了一个新的缺点:传感器成为将光子转换为电子的效率较低的手段,因为每个像素位置现在都由光电二极管和垂直移位寄存器的一部分组成。换言之,部分像素对光不敏感,因此相对于落在像素区域上的光的量产生较少的电荷。这种灵敏度的损失通过在传感器上添加将入射光集中到每个像素的光活动区域的微小透镜而大大减轻,但是这些“微透镜”有其自身的一系列困难。

在行间传输架构中,存储(和垂直传输)区域位于光活性柱之间。

结语:

希望这篇文章能帮助广大读者理解CCD图像传感器,以及能在设计CCD图像传感器时做好权衡。全帧CCD可能看起来是最“原始”的类型,但它们仍然是不需要高帧速率的系统中的首选,并且可以容忍闪光灯或机械快门的使用。帧传输CCD和线间传输CCD具有更多的用途,在某些应用中具有关键的优势。

近日,深耕行业20余年的传感器专家网,最新成立了一个传感器行业专业社群——【传感器智汇圈】,您可添加传感器专家网WX号(15012882502)来跟我们一起交流。

一文带你看懂三种CCD图像传感器

  CCD的中文全称是电荷耦合元件,是一种半导体成像器件。通过被摄物体的图像经过镜头聚焦至CCD芯片上的原理制成了CCD摄像机,其中的核心原件就是CCD图像传感器。

  CCD图像传感器作为一种新型光电转换器现已被广泛应用于摄像、图像采集、扫描仪以及工业测量等领域。作为摄像器件,与摄像管相比,CCD图像传感器有体积小、重量轻、分辨率高、灵敏度高、动态范围宽、光敏元的几何精度高、光谱响应范围宽、工作电压低、功耗小、寿命长、抗震性和抗冲击性好、不受电磁场干扰和可靠性高等一系列优点。

  CCD是数码相机的电子眼,它革新了摄影术,光可以被电子化地记录下来,取代了胶片。这一数字形式极大地方便了对图像的处理和发送,”诺贝尔奖评选委员会称赞说,“无论是我们大海中深邃之地,还是宇宙中的遥远之处,它都能给我们带来水晶般清晰的影像。”

  CCD图像传感器发展历程

  CCD图像传感器于1969年在贝尔试验室研制成功,之后由日商等公司开始量产,其发展历程已经将近30多年,从初期的10多万像素已经发展至目前主流应用的500万像素。CCD又可分为线型(Linear)与面型(Area)两种,其中线型应用于影像扫瞄器及传真机上,而面型主要应用于数码相机(DSC)、摄录影机、监视摄影机等多项影像输入产品上。

  发明:

  伴随着数码相机、带有摄像头的手机等电子设备风靡全球,人类已经进入了全民数码影像的时代,每一个人都可以随时、随地、随意地用影像记录每一瞬间。带领我们进入如此五彩斑斓世界的,就是美国科学家威拉德·博伊尔和乔治·史密斯发明的CCD(电荷耦合器件)图像传感器。

  百多年来,伴随着暗箱、镜头和感光材料制作不断取得突破,以及精密机械、化学技术的发展,照相机的功能越来越强大,使用越来越方便。但是,直到几十年前,人们依然只能将影像记录在胶片上。拍摄影像慢慢普及,但即时欣赏、分享、传递影像还非常困难。1969年,博伊尔和史密斯极富创意地发明了一种半导体装置,可以把光学影像转化为数字信号,这一装置,就是CCD图像传感器。

  发展历程:

  CCD图像传感器的发明,实际上是应用爱因斯坦有关光电效应理论的结果,即光照射到某些物质上,能够引起物质的电性质发生变化。但是从理论到实践,道路却并不平坦。科学家遇到的最大挑战,在于如何在很短的时间内,将每一个点上因为光照而产生改变的大量电信号采集并且辨别出来。经过多次试验,博伊尔和史密斯终于解决了上述难题。他们采用一种高感光度的半导体材料,将光线照射导致的电信号变化转换成数字信号,使得其高效存储、编辑、传输都成为可能。简单地说,CCD图像传感器就像是胶片一样,有了它,人们就再不用耗时费力地去冲洗胶片了。

  三种CCD图像传感器的优缺点

  CCD(电荷耦合器件)图像传感器体系可分为全帧(FF)、帧传输(FT)和行间传输(IT)三种CCD架构。

  全帧(Full-Frame)CCD

  半导体区域既可以作为光电元件,也可以作为电荷转移器件,这有点违反直觉,但这正是FF CCD中发生的事情。在集成过程中,像素位置响应入射光子积累电荷,在集成之后,电荷包垂直地通过像素位置向水平移位寄存器移动。

  一般情况下,我们通过应用精心定时的时钟信号来获得CCD像素数据,这些时钟信号依次在器件的电荷传输结构中产生电位阱和电位屏障。在全帧CCD中,我们需要能够将这些控制电压应用到同样起光电探测器作用的区域,因此,栅极电极由透明多晶硅制成。

  全帧CCD相对而言比较简单且易于制造,并且它们允许整个CCD表面具有光敏性。这使硅的给定区域中可以包含的像素数量最大化,同时也使每个像素中实际上能够将光子转换为电子的部分最大化。

  然而,一个主要的限制是需要一个机械快门(或一个同步的、短时间的光源称为频闪)。CCD的光激活区并不会因为你已经决定是时候执行读出而停止光激活。如果没有在曝光周期完成后阻挡入射光的机械快门,则在(有意)集成期间生成的电荷包将被读出期间到达的光损坏。

  这是全帧CCD的基本架构

  帧传输(Frame-Transfer)CCD

  一般来说,我们更喜欢用电子方式控制曝光,快门(像任何其他快速移动的高精度机械设备一样)使设计更加复杂,最终产品更加昂贵,整个系统更容易出现故障。在电池供电的应用中,驱动物理物体所需的额外能量也是不可取的。

  FT-CCD允许我们保持FF-CCD的一些优点,同时(几乎)不需要快门。这是通过将FF CCD分成两个大小相等的部分来实现的。其中一个部分是普通的光敏成像阵列,另一个部分是屏蔽入射光的存储阵列。

  在集成之后,用于所有像素的电荷包被快速地传输到存储阵列,然后在存储阵列中发生读出。当读取存储位置时,活动像素可以为下一图像累积电荷,这使得帧传输CCD能够获得比全帧CCD更高的帧速率。

  说FT架构几乎消除了快门,因为无快门设计会遇到一个称为垂直涂抹的问题。电荷包从活动像素到存储位置的传输很快,但不是瞬间发生的,因此在垂直传输期间到达传感器的光可以改变图像信息。

  FT架构的主要缺点是成本较高,并且相对于图像质量而言面积增大,因为基本上是使用FF传感器,然后将像素数减少两倍。

  帧传输CCD在全帧架构中增加了一个存储阵列

  线间传输(Interline-Transfer)CCD

  我们需要的最后一个主要的架构改进是将集成电荷快速转移到存储区域,从而将污迹降低到可以忽略的程度。线间传输CCD通过提供与每个光活动位置相邻的存储(和传输)区域的网络来实现这一点。曝光完成后,传感器中的每个电荷包同时传输到非光敏垂直移位寄存器中。

  因此,它的CCD能够以最小的拖影实现电子快门,并且像FT-ccd一样,它们可以在读出期间集成,从而保持较高的帧速率能力。然而,如果光生电荷在读出过程中从光活性柱泄漏到相邻的垂直移位寄存器中,则可能发生一些涂抹。如果应用程序不需要高帧速率,则可以通过延迟积分直到读出完成来消除此问题。

  线间CCD不需要帧传输CCD中使用的大存储部分,但它们引入了一个新的缺点:传感器成为将光子转换为电子的效率较低的手段,因为每个像素位置现在都由光电二极管和垂直移位寄存器的一部分组成。换言之,部分像素对光不敏感,因此相对于落在像素区域上的光的量产生较少的电荷。这种灵敏度的损失通过在传感器上添加将入射光集中到每个像素的光活动区域的微小透镜而大大减轻,但是这些“微透镜”有其自身的一系列困难。

  在行间传输架构中,存储(和垂直传输)区域位于光活性柱之间。

  结语:

  希望这篇文章能帮助广大读者理解CCD图像传感器,以及能在设计CCD图像传感器时做好权衡。全帧CCD可能看起来是最“原始”的类型,但它们仍然是不需要高帧速率的系统中的首选,并且可以容忍闪光灯或机械快门的使用。帧传输CCD和线间传输CCD具有更多的用途,在某些应用中具有关键的优势。

近日,深耕行业20余年的传感器专家网,最新成立了一个传感器行业专业社群——【传感器智汇圈】,您可添加传感器专家网WX号(15012882502)来跟我们一起交流。

相关问答

ccd 的两种图像 传感器 的主要性能差别?

图像传感器相当于胶片相机所使用的胶片,当然在对于摄像来说,可以想像成拍摄胶片电影时用的胶片。图像传感器由半导体集成的电子元件构成,主要作用是把收集光线...

ccd传感器 相机推荐?

比较推荐的相机有天蓝色索尼t33,索尼t77,日版奥林巴斯u1070。其中在cd的传感器相机中,排名最为靠前的是天蓝色索尼T33,它的开机时间约为1.3秒,快门时滞时间...

手机 传感器类型 ?

1-重力加速度传感器;测手机正反,以便旋转屏幕;打某些游戏时,倾斜手机可以改变速度;2-光敏传感器;测翻盖手机是否翻开盖子或耳朵贴近话筒黑屏省电;3-...1...

ccd 图像 传感器 基本参数?

CCD图像传感器,其光电参数都可依据业界成熟的EMVA1288标准进行评价。图像传感器的主要光电参数CCD图像传感器的性能指标可分为光学指标和电学指标,而其...

索尼 ccd 所有型号?

2,索尼t77,1010万有效像素的SuperCCD传感器,镜头使用的是卡尔·蔡司Vario-Tessar镜头,4倍光学变焦性能,光学防抖,相机微距出色,感光度范围ISO80-3200。3...3....

ccd 图像 传感器 三种功能?

关于CCD图像传感器的三种功能,我建议您查看相关资料或咨询专业人士以获取最新信息。一般来说,CCD图像传感器的三种功能可能包括:捕捉静态图像:CCD图像传...

CCD 叫什么?

CCD,中文全称是光电耦合器件,也可以称为CCD图像传感器。CCD是一种半导体器件,能够把光学影像转化为数字信号。CCD上植入的微小光敏物质称作像素。一块CCD上包...

投影仪 ccd 是什么意思?

投影CCD的中文全称:电荷耦合元件。可以称为CCD图像传感器,也叫图像控制器。CCD是一种半导体器件,能够把光学影像转化为电信号。CCD上植入的微小光敏物质称作像...

相机的 传感器 都有那些 类型 ?

数码相机的光感传感器就有两个类型,它们分别是ccd和cmos,由于ccd耗电量大(早期数码相机使用),现在的数码相机均系cmos光感传感器,包括手机相机也是采用cmo...

cdd和 ccd 区别?

CDD和CCD是两种不同类型的数码成像技术,它们在成像原理、颜色还原和动态范围等方面存在一些区别。1.成像原理:CDD是一种直接转接式的数码成像技术,它使用...

展开全部内容