温度传感器怎么测电阻 没有特异功能 手机软件是如何测得电池温度的
没有特异功能 手机软件是如何测得电池温度的
手游的火热带动了电竞手机的发展,电竞手机主打极致的游戏性能,其中对于温控、散热的要求也比较高,所以很多机型会在机身各部位安装温度传感器,实时的监测机身温度。
一般情况下,大部分手机内部是没有温度传感器的,那么疑问就来了:像鲁大师、安兔兔等一些跑分软件是如何测得手机电池温度的呢?温控调节的必要性又表现在哪里?带着疑问,我们往下看。
01里应外合 软硬件都要支持
手机在充放电、运行各类大型软件时,发热都很严重,而手机内部的元器件对温度又特别敏感,同时高温对锂电池寿命的影响更为致命。
为防止温度过载对内部各组件的损坏,手机都需要实时的监测温度,而温度的监测自然离不开硬件的支持。手机锂电池一般都是3个及以上的触点。一个触点是电池正极,一个触点是电池负极,而其他的触点就是软件监测手机温度的关键。
这类触点就是NTC负温度系数热敏电阻触点,它一般集成在手机电池上面,随着温度升高它的电阻值会变小。
熟悉锂电池特性的朋友应该了解,NTC热敏电阻是一种以过渡金属氧化物为主要原材料,采用电子陶瓷工艺制成的热敏半导体陶瓷元件。它的电阻值随温度升高而降低,利用这一特性可制成测温、温度补偿和控温元件。这种原材料采集成本并不高,且封装形式多样,能够广泛应用到各种电路当中。
手机锂电池中的NTC热敏电阻大多数为贴片封装,主要起温度监测的作用,在电池的充、放电过程中,手机根据其阻值的大小来判断电池的温度,系统会相应的做出调控,如停止充电等等。
手机CPU只需要检测输出接口处的电压,就可以判断当前手机的实时温度。那么,像鲁大师这类软件又是如何获取当前手机电池温度数据的呢?这里就讲求里应外合了。
目前市面上的手机处理器都是具有驱动程序的,像苹果的A系列、高通骁龙系列、海思麒麟和联发科等等。手机的各项数据会存放在系统目录下,供部分应用读取使用,其中就包括有关电池温度的数据接口路径(系统路径:/sys/class/thermal/)。
程序员通过编程来调取手机的实时温度数据,所以应用软件要获得手机的温度信息,首先需要NTC热敏电阻硬件上的支持,其次则需要系统提供温度数据的路径,两者缺一不可,现在大家应该明白软件是如何测得手机电池温度的了。
02虽然温控导致处理器降频 但却很有必要
经常玩游戏的朋友或许都经历过,手机在刚开始游戏时帧率都很稳定,但玩得时间太久后处理器就开始降频了,特别是处理器制程较差的机型,游戏帧率的波动会更大。处理器不可能一直保持满频运载,手机的温控就显得很有必要。
手机芯片在设计和制造过程中,工程师都会考虑芯片温度的阈值,当温度过热时,处理器会首先尝试降低频率,如果温度一直不降就继续采取降频策略,直至温度降下来为止。当然,一般情况下,不等芯片的温度达到阈值,手机外壳基本就已经到了烫手不能用的地步了。
为了避免温度过载影响使用体验,当下很多新机会通过传感器实时监察电池、主板、芯片等元器件部位的温度,只要温度超过阈值都会触发过热保护。
例如,一般手机锂电池超过40℃,系统可能就会采取降频措施,通过降低CPU运行频率,让整机的温度达到平衡。此外像调低屏幕亮度、冻结后台应用等,也都是系统采取温控调节的方法。
对于处理器、主板等其他元器件而言,温控也起到了保护作用,更利于延长其使用寿命。随着应用越来越吃性能,手机运行就避免不了发热。当下有效的解决办法无非是厂商宣传的液冷散热技术,在让手机保持高频输出的同时,还可以降低手机发热量,其他方法就是外置风冷散热工具等,但这也无法避免的让手机变得更加厚重了。
写在最后
有人说温控会降低处理器频率,但解除温控限制手机会明显发热,到了“烫手”的程度还谈什么用户体验。另一方面,高温对锂电池的损伤是不可逆的,温控不仅是出于对电池寿命的保养,更是对用户安全的保障,毕竟生活中电池过热而引发安全事故数不胜数。
如何解决手机的发热问题,一直是工程师们所研究攻克的方向。除了在编程软件方面发力外,新硬件技术产生的效果可能更为显著。期待未来先进的制程工艺芯片、新的电池、元器件材料,可以让手机的发热量更少,减负走向“轻量化”。
(7517798)
温度问题为您解决(一)温度传感基本原理
在个人电子产品、工业或医疗应用的设计中,工程师必须应对同样的挑战,即如何提升性能、增加功能并缩小尺寸。除了这些考虑因素外,他们还必须仔细监测温度以确保安全并保护系统和消费者免受伤害。
众多行业的另一个共同趋势是需要处理来自更多传感器的更多数据,进一步说明了温度测量的重要性:不仅要测量系统或环境条件,还要补偿其他温度敏感元件,从而确保传感器和系统的精度。另外一个好处在于,有了精确的温度监测,无需再对系统进行过度设计来补偿不准确的温度测量,从而可以提高系统性能并降低成本。
温度设计挑战分为三类
温度监测: 温度传感器提供有价值的数据来持续跟踪温度条件,并为控制系统提供反馈。此监测可以是系统温度监测或环境温度监测。在一些应用中,我们可以看到设计挑战的特点是需要在控制回路中同时实现这两种监测。这些监测包括系统温度监测、环境温度监测以及身体或流体温度监测。
温度保护: 在多种应用中,一旦系统超过或低于功能温度阈值,便需要采取措施。温度传感器在检测到事先定义的条件时提供输出警报以防止系统损坏。在不影响系统可靠性的情况下提升处理器吞吐量是可行的。系统经常过早启动安全热关断,结果造成高达5°C甚至10°C的性能损失。当系统超过或低于功能温度阈值时,工程师可以自主启动实时保护措施。
温度补偿: 温度传感器可以在正常工作期间随温度变化最大限度提高系统性能。监测和校正其他关键组件在发热和冷却时的温漂可降低系统故障的风险。
本系列文章将提供一些TI应用简介,由此说明使用不同温度传感技术的各种应用的设计注意事项。首先介绍主要的温度挑战,然后重点说明各种应用的设计注意事项,评估温度精度和应用尺寸之间的权衡,同时讨论传感器放置方法。
温度传感器基本原理
在嵌入式系统中,总是需要更高的性能、更多的功能和更小的外形尺寸。鉴于这种需求,设计人员必须监测整体温度以确保安全并保护系统。在应用中集成更多传感器进一步推动了对温度测量的需求,不仅要测量系统条件或环境条件,还要补偿温度敏感元件并保持整体系统精度。
温度设计注意事项
实现高效温度监测和保护的注意事项包括:
•精度。传感器精度表示温度与真实值的接近程度。在确定精度时,必须考虑所有因素,包括采集电路以及整个工作温度范围内的线性度。
•尺寸。传感器的尺寸会对设计产生影响,而分析整个电路有助于实现更优化的设计。传感器尺寸还决定了热响应时间,这对于体温监测等应用非常重要。
•传感器放置。传感器的封装和放置会影响响应时间和传导路径;这两个因素都对高效温度设计至关重要。
工业中常见的温度传感器技术包括集成电路 (IC) 传感器、热敏电阻、RTD和热电偶。下表比较了在为设计挑战评选适合的技术时参考的主要特性。
IC传感器
IC温度传感器取决于硅带隙的预测温度依赖性。如下图和公式所示,精密电流为内部正向偏置P-N结提供电源,从而产生对应于器件温度的基极-发射极电压变化 (ΔVBE)。
硅带隙的温度依赖性
鉴于硅的可预测行为,IC可在宽泛的温度范围内提供高线性度和精度(高达 ±0.1°C)。这些传感器可以集成系统功能,例如模数转换器 (ADC) 或比较器,最终可以降低系统复杂性并减小整体占用空间。这些传感器通常采用表面贴装和穿孔封装技术。
热敏电阻
热敏电阻是无源组件,其电阻很大程度上取决于温度。热敏电阻分为两类:正温度系数 (PTC) 和负温度系数 (NTC)。
虽然热敏电阻针对板载和非板载温度传感方式提供了多种封装选择,但与IC传感器相比,其实现方案通常需要更多的系统组件。硅基PTC热敏电阻具有线性特征,而NTC热敏电阻具有非线性特征,通常会增加校准成本和软件开销。
典型的热敏电阻实现方案
上图显示了典型的热敏电阻实现方案。通常很难确定热敏电阻的真实系统精度。NTC系统误差的影响因素包括NTC容差、偏置电阻器(易受温漂影响)、ADC(可能导致量化误差)、NTC固有的线性化误差以及基准电压。
RTD
RTD是由铂、镍或铜等纯净材质制成的温度传感器,具有高度可预测的电阻/温度关系。
复杂的四线RTD电路
铂RTD可在高达600°C的宽泛温度范围内提供高精度和高线性度。如上图所示,一个采用模拟传感器的实现方案中包括复杂的电路和设计挑战。最终,为了实现精确的系统,需要进行复杂的误差分析,这是因为产生影响的组件数量较多,而这也会影响系统的整体尺寸。RTD还需要在制造期间进行校准,而后每年进行现场校准。
RTD 系统误差的影响因素包括RTD容差、自发热、ADC量化误差和基准电压。
热电偶
热电偶由两个不同的电导体组成,这两个电导体在不同的温度下形成电结。由于热电塞贝克效应,热电偶产生与温度相关的电压。该电压转换为热端和冷端之间的温差。
带有冷端补偿 (CJC) 温度传感器的热电偶
必须知道冷端的温度才能获得热端温度。由于有两个系统具有相互影响的单独容差和能力,这里的精度将受到限制。上图显示了一个典型的CJC实现方案,其中采用热电偶和外部传感器来测定热端温度。
热电偶不需要外部激励,因此不会受到自发热问题的影响。它们还支持极端温度 (>2,000°C)。
虽然热电偶坚固耐用且价格低廉,但它们却需要额外的温度传感器来支持CJC。热电偶往往具有非线性特征,并且对于热电偶与电路板连接处的寄生结非常敏感。对热电偶进行数字化容易受到先前讨论的 ADC 误差的影响。
点击了解更多,快速定位TI模拟专栏,查看更多TI传感器类产品的最新、最全资料。同时,在未来的几篇文章中,我们会重点说明各种应用的设计注意事项,评估温度精度和应用尺寸之间的权衡,同时讨论传感器放置方法。
相关问答
温度传感器 的 电阻怎么测 量?测量温度传感器的电阻可以采用万用表或数字电阻表等设备,步骤如下:1.准备工作:将温度传感器从设备上拆卸下来,并确认传感器两端电路处于断开状态。2.选择...
谁知道怎样测量热电偶的 电阻 ?_作业帮[最佳回答]热电偶、热电阻两种测量方法根据温度传感器的使用方式,通常分为接触式和非接触式两类.一、接触式由热平衡原理可知,两个物体接触后,经过足够长的时...
怎样测量空调感温探头的阻值?[回答]用万用表测量空调感温探头的阻值。空调常用的感温探头有5K、10K、15K、20K、50K这些阻值,这些感温探头的阻值是指在25℃的环境温度下,测量的电阻值...
汽车水温 传感器 的检测方法及流程[最佳回答]汽车水温传感器的检测方法如下:1、检测供电电压:拔下插头,用万用表两表笔检测两线之间的电压是否为基准电压5V左右(有的车型直接供12V电压给水温传...
【急求 热敏电阻怎么测量 我这有个热敏电阻不知道能不能用,也...[回答]热敏电阻的阻值随温度的变化而变化,正温度系数热敏电阻(MZ)阻值随温度升高而升高,负温度系数(MF)随温度的升高而降低.要准确测试的话需要用高精度恒...
三根线的水温塞 怎么测电阻 ?三线的水温传感器用万用表电阻档测:1、修正喷油量,当低温时增加喷油量;2、修正点火提前角,低温时增大点火提前角,高温时,为防止爆燃,推迟;3、影响怠速控...三...
温度传感器 和 电阻 的换算方法?温度传感器和电阻之间的换算是利用温度和电阻之间的函数关系进行计算的。主要有两种方法进行换算,一种是基于线性关系的方法,在该方法中温度和电阻之间存在一...
热敏 电阻 是 怎么测 量 温度 的,它的测量原理是什么?热敏电阻是对温度变化表现出非常灵敏的一种半导体电阻元件,它能测量出温度的微小变化,并且体积小,工作稳定,结构简单因此,它在测温技术、无线电技术、自动...
冷却液 温度传感器 检测方法?1.用万用表检测冷却液温度传感器(1)在车检查。将点火开关关闭,拆下传感器的连接器,用汽车专用万用表的Rx1挡,测试传感器两端子的阻值。以皇冠3。O的THW...1...
热敏电阻 式 温度 控制器的结构和工作原理是什么 - 汽车维修技术网[回答]热敏电阻式温控器又称为电子控制式温控器,常用在天津夏利和长安奥拓等微型轿车空调系统中,由热敏电阻式蒸发器温度传感器、电子放大电路、电磁离合...