鼓风机传感器 首创混合响应柔性压力传感器,为人把脉,将为机器人打造人类触觉
首创混合响应柔性压力传感器,为人把脉,将为机器人打造人类触觉
现任德克萨斯大学奥斯汀分校(UT-Austin)天普基金会特聘终身教授的鲁南姝认为,人类科技的发展趋势一定是机器越来越像人,人越来越像机器。“人工智能时代,人机融合具有必然性,否则将与时代脱节” SpaceX CEO 伊隆·马斯克在 2017 年世界政府峰会上的发言令鲁南姝印象深刻。
(来源:Pixabay)
近年来,柔性可穿戴设备在监测人体生物信号方面的研究取得长足进步,使用柔性贴片随时随地监测血压、脉搏指日可待。然而,现有可穿戴压力传感器存在一个大问题:高灵敏度与宽域工作范围无法兼得。即使是非常轻微的压力,都会使传感器的灵敏度大幅下降。
“柔性压力传感器赛道非常拥挤,经过二十年的发展,研究遇到瓶颈,因为仍然没有很好的办法能够解决压力和灵敏度之间的矛盾,”鲁南姝说。
近期,鲁南姝带领的团队通过创新有史以来第一个混合传感器方法来填补这一空白,“这是第一个利用压阻-压容混合响应来承受压力而不显著降低灵敏度的传感器。”她向 DeepTech 表示。
首次将电容与电阻结合,平衡压力宽域与灵敏程度
鲁南姝课题组发明的“复合响应”压力传感器(hybrid response pressure sensor, HRPS)近期在 Advanced Materials 上发表。
通过导电的多孔状微结构与超薄绝缘层的结合,研究员们首次发现分布式压电电阻和压电电容的混合响应能够使得柔性压力传感器兼具高灵敏度和宽域工作范围。小至一种果蝇的重量(0.07 pa),大到人脚踏步所产生的压力(125 kPa),都可以被灵敏地感应到。
图 | “复合响应” 压力传感器(hybrid response pressure sensor, HRPS)
据介绍,该传感器是由一种超高孔隙率的导电纳米复合材料(porous nanocomposite, PNC),超薄绝缘层(PMMA)以及 Au/PI 电极复合而成。其中,多孔纳米复合材料(PNC)由碳纳米管(carbon nanotube, CNT)掺杂的 Ecoflex 硅胶构成。
图 | 复合响应压力传感器 HRPS 应用演示。
为了展示传感器对微小压力信号的灵敏程度,研究人员测量了一只仅有 0.7 毫克重的果蝇、传感器上方 3 cm 处的鼓风机吹出的气流、三个连续降落的水滴,以及人体颈动脉和颞动脉的脉搏跳动。
实验结果显示,HRPS 对果蝇自重带来的仅有 0.07 Pa 的压力,以及微小气流、水滴滴落时引起的压力响应准确且迅速,响应时间仅为 94 毫秒。
在健康监测方面,鲁南姝课题组的成员此次将柔软、轻薄的 HRPS 贴附在受试者颈动脉,可清晰探测到脉搏波动。颈动脉和额颞动脉属于细微搏动,其测量对设备的灵敏度要求极高。
哪怕事先在传感器上施加额外压力,比如为受试者戴上虚拟现实(VR)头盔,对 HRPS 产生了 8 kPa 的预压力,颞动脉搏动信号仍然能够被清晰测得。
“这是颞动脉搏动信号首次由电容式压力传感器无创地测量得到。” 鲁南姝说道。
在对高压力的测量中,HRPS 也表现出良好的灵敏度。论文的补充视频中,小组成员将 HRPS 贴在一位体重为 80 kg 的受试者的脚掌上,测量其在瑜伽垫上行走产生的压强,最终测量的最大记录值为 125 kPa ,这一数字与此前其他研究测得人脚行走产生的压强一致。
此次研究主要展示了 HRPS 在人体健康监测上的应用,除此之外,鲁南姝对他们研制的柔性传感器还有更宏伟的愿景。她正在研究如何将这种柔性传感器包裹在其他柔软物体上(如机器人手),使其具有人类皮肤的敏感性。通过模拟人类真实的触感,让机器人拥有通过触摸来识别物体的能力。
从电子纹身到电子皮肤,人与机器如何向彼此靠近?
2012 年,鲁南殊凭借“电子纹身”的发明入选《麻省理工科技评论》“35 岁以下科技创新 35 人”全球区域的榜单评选。
传统的智能穿戴设备体积较大,携带不便,穿戴舒适度欠佳。而“电子纹身”(Electronic Tattoo or E-Tattoo)具有无创、轻薄以及极佳的形变能力,并将心电,肌电,脑电等多种身体信息传输到手机、电脑等终端。这种一次性电子贴片在医疗或人机交互领域都具有极大的市场前景,被认为是“可穿戴设备的终极传感器形态”。
图 | 多层、模块化“电子纹身”可实现无线充电和无线数据传输
鲁南姝曾于清华大学和哈佛大学分别取得了学士学位和博士学位,后来在伊利诺伊大学香槟分校以贝克曼博士后研究员身份开展工作。她的研究领域涉及柔性电子的力学、材料、制造和人体集成等多个方向。
当下,鲁南姝从两方面来建构自己的科研大厦,一是电子纹身(E-tattoo),轻薄、柔软的特性使其能够良好贴合人体皮肤,捕捉生物信号,传感人类的生命体征。人体是一种模拟生物信号系统,而机器和电子世界则是数字的。因此若想实现人机交互,人需要“数字化”,“电子纹身”被认为是人类“数字化”的有效途径之一。
图 | 多层、模块化“电子纹身”可实现无线充电和无线数据传输
另一个是电子皮肤(E-skin),通过柔性压力、温度等传感器,让软机器人拥有类似于人类皮肤的敏感性,赋予其生动的触觉、视觉、听觉、味觉和嗅觉等感知能力。此次发表的研究便是一种新型的混合相应电子皮肤,拓宽传感器的压力工作范围,并保持触觉灵敏度。
鲁南姝的终极目标是能够完成人机交互的闭环:人体通过电子纹身实现与数字世界的链接,机器人则通过电子皮肤模拟人类感知环境。因此,她的团队一直围绕 “柔性生物电子系统” 在以下四个方面展开研究:
第一是柔性/可拉伸结结构力学研究。如被动型和主动型(压电)蜿蜒带状结构的变形机理以及由于多层柔性电子的层间杨氏模量失配导致的上下层弯曲解耦。
第二是二维材料和纳米材料,包括石墨烯电子纹身(Graphene E-Tattoo or GET),二维材料形成的纳米气泡和纳米帐篷机理,以及 PNC。
第三是制备工艺和转印技术,包括无线电子纹身的“切割—焊接—粘贴” 工艺和水辅助转印。
第四是生物-电子界面,包括器件与不平生物组织表面的共形机理,受剪纸启发的可共形人造视网膜,以及表面凹坑阵列带来的稳定且可重复使用的干性粘结界面。
人机交互,开启智慧养老时代
在问到自己最期待的应用场景时,鲁南姝说道:“我个人偏向于医疗方向的应用,尤其是养老”谈到养老问题时,她有些许的动容,并用到“鞭长莫及”来形容。
鲁南姝的奶奶、外公、外婆已年近百岁,但她长期在国外,受疫情的影响无法随时回到国内照顾家中的父母与老人。通过电子纹身实时监测老人活动与健康,通过机器人护工弥补有的巨大缺口和市场的养老问题,是鲁南姝所期待的未来,“在欠发达地区,护工非常缺乏,有能力且温柔的护工更是。为机器人制作电子皮肤,让其拥有匹敌人类的温柔与触感,将能很大程度上缓解这类职业缺口。”被问及人工智能取代人类工作的问题时,鲁南姝说:“人类情感交流不可替代,但事务性工作可以。”
(来源:Pixabay)
中社科院老年研究所估计,中国养老市场的商机约 4 万亿元,到 2030 年有望增至 13 万亿元。“养老服务业在凸显出民生事业特征的同时也彰显出其作为朝阳产业的巨大吸引力。”
第7次人口普查数据显示,我国 65 岁以上的老龄人口达到 1.9 亿人,占比达 13.5%,中国正在加速进入老龄化社会。传统养老模式已无法全盘适应当前需求,通过科技手段寻求新型多元复合治理方案解决老年人多层次需求成为必然趋势,鲁南姝以及其他科研人员的研究,将会是未来“智慧养老”图景不可或缺的一小片拼图。
全面了解汽车主要传感器的安装位置
发动机控制系统传感器安装位置(前视图)▼
发动机控制系统传感器安装位置(后视图)▼发动机控制系统传感器安装位置(顶视图)▼
加速踏板位置传感器安装位置▼
发动机控制系统传感器安装位置(总图)▼
汽车底盘传感器安装位置
1.变速器控制系统(奥迪Q5Steonic7速双离合器变速器挡位、行程、油温传感器)▼
01 霍尔式挡位行程传感器▼
02 变速器输入轴转速传感器▼
2.动态稳定系统(车轮转速传感器)▼
车轮转速传感器安装位置
1—右前轮转速传感器;2—电动机械式驻车制动器;3—右后轮转速传感器;4—右后制动摩擦片磨损传感器;5—左后轮转速传感器及插接器;6—左后轮制动器制动盘;7—左后轮制动器制动钳;8—自动驻车按钮;14—动态稳定控制系统DSC;15—左前轮制动钳;16—左前轮制动盘;17—左前轮转速传感器;18—左前轮制动摩擦片磨损传感器
3.转向系统(转向角度、转矩传感器)▼
汽车安全舒适系统传感器位置
1.电控悬架系统(车辆高度传感器)▼
1—前桥电动主动式侧倾稳定杆;2—电子助力转向系统EPS;3—右前轮加速度传感器;4—右前减震器调节装置调节阀;5—右前车辆高度传感器;6—左前轮加速度传感器;7—左前减震器调节装置调节阀;8—左前车辆高度传感器;9—12V蓄电池;10—动态稳定控制系统;11—车身域控制器;12—立体摄像机;13—碰撞和安全模块;14—驾驶体验开关;15—垂直动态管理平台;16—右后车辆高度传感器;17—右后减震器调节装置调节阀;18—右后车轮加速度传感器;19—左后车辆高度传感器;20—左后减震器调节装置调节阀;21—左后车轮加速度传感器;22—后桥电动主动式侧倾稳定杆;23—电源控制单元PCU
2.主动式稳定杆系统(车轮加速度传感器)▼
1—前桥电动主动式侧倾稳定杆;2—右前车轮加速度传感器;3—发动机室12V蓄电池;4—右后车轮加速度传感器;5—垂直动态管理平台;6—右后配电盒;7—电源控制单元PCU;8—后桥电动主动式侧倾稳定杆;9—左后车轮加速度传感器;10—左前车轮加速度传感器
3.安全气囊(碰撞传感器)▼
1—右前碰撞传感器;2—右侧B柱碰撞传感器;3—右前车门内碰撞传感器(侧面碰撞传感器);4—SRS控制单元内的加速度传感器;5—左前车门内碰撞传感器(侧面碰撞传感器);6—左侧B柱碰撞传感器;7—左前碰撞传感器
4.轮胎压力监控系统(轮胎压力传感器)▼
1—右前车轮胎压监控传感器(车轮电子装置);2—中央信息显示器(可显示轮胎充气压力);3—右后车轮胎压监控传感器(车轮电子装置);4—遥控信号接收器;5—左后车轮胎压监控传感器(车轮电子装置);6—组合仪表;7—动态稳定控制系统DSC;8—左前车轮胎压监控传感器(车轮电子装置)
5.空调系统传感器安装位置▼
空调系统传感器安装位置
1—新鲜空气进气通道温度传感器;2—阳光强度传感器;3—控制单元;4—仪表板温度传感器;5—脚坑出风口温度传感器;6—车外温度传感器
空调器上传感器安装位置
1—脚坑/除霜翻板伺服电机;2—新鲜空气进气通道温度传感器;3—空气流量翻板和循环空气翻板伺服电机;4—新鲜空气鼓风机;5—新鲜空气鼓风机控制单元;6—中央翻板伺服电机;7—温度翻板伺服电机;8—脚坑出风口温度传感器
相关问答
奥迪暖风/空调上有哪些执行元件和 传感器 - 汽车维修技术网[回答]这两个翻板通过一个驱动带轮(有两个导轨)来实现分别调节。在其他系统中,也有通过真空力或电磁阀来调节循环空气翻板的。新鲜空气鼓风机和新鲜空气鼓...
迈腾上的各种 传感器 名称[最佳回答]1、迈腾(查成交价|参配|优惠政策)传感器位置如下:氧传感器。车轮速度传感器。水温传感器。氧传感器安装在排气管上,轮速传感器像前轮刹车盘和水温传...
长城c50 鼓风机 不转是什么原因?1:长城C50鼓风机不转的原因有多种可能。1.可能是鼓风机电机故障:鼓风机电机损坏或线路接触不良会导致鼓风机无法正常转动。2.可能是控制模块如果控制模块出...
别克gl8 鼓风机 温度 传感器 异响?答,别克gl8鼓风机温度传感器异响解决方法如下1、车主首先需要检查一下鼓风机本身是否出现损坏,若是鼓风机本身故障造成嗡嗡响的现象时,车主就需要对鼓风机进...
自动空调系统常用的 传感器 有哪些 - 汽车维修技术网[回答]自动空调系统由制冷、暖风、送风、操纵控制等分系统组成。自动空调电子控制系统主要由传感器、执行元件和空调电控单元(ECU)三部分构成。自动空调系...
自动空调的 鼓风机 转速控制系统由哪些部件组成?_汽配人问答[最佳回答]自动空调的鼓风机转速控制的目的是为了调节降温或升温速度,稳定车内温度。鼓风机转速控制系统主要由冷却液温度传感器、蒸发器温度传感器、鼓风...
奥迪a6l2.0t仪表板温度 传感器鼓风机 v42在什么位置?发动机舱,雨刮板下面【汽车有问题,问汽车大师。4S店专业技师,10分钟解决。】发动机舱,雨刮板下面【汽车有问题,问汽车大师。4S店专业技师,10分钟解决。】
汽车空调的热 传感器 是什么?这个传感器是自动空调上的部件,主要作用是给ECU提供车室之外的温度信号,ECU根据此信号与车内温度信号对比,确定车室内的温度,以满足车室内人员的需求。例如:...
12帕萨特 鼓风机 四根线怎么检测好坏?鼓风机四根线的好坏可以通过以下步骤进行检测:1.通过检测四根线的电阻值和电压来判断鼓风机的好坏。2.鼓风机的四根线通常是电源线、地线、控制线和传感器线。...
奥迪仪表板温度 传感器 G56的工作原理 - 汽车维修技术网[回答]仪表板温度传感器G56一般都直接装在控制单元内。它将车内的实际温度值传给控制单元。气流中有一个鼓风机,用于抽取车内空气。这个鼓风机由操纵和显...