波式传感器 什么是压电声表面波(SAW)传感器?看完就懂了
什么是压电声表面波(SAW)传感器?看完就懂了
压电材料作为感知电力设备放电、振动等信号的关键材料,在电力设备振动监测、放电检测、探伤、温度测量、电压传感等领域得到广泛应用。
压电材料在压电传感器件中的应用多种多样,其核心在于机械能和电能的相互转换:压电材料受机械振动(压电振动传感器)、声波传导(压电声传感器)等机械外力作用时晶格形变,引起极化状态的变化,输出传感电信号,或通过对压电材料受电场作用产生的形变进行测量来反映电场大小(压电电压传感器)。
声波信号可较好地实现与电信号的耦合与相互转换。根据声波激励、传播和耦合方式的不同,压电声传感器可分为压电超声传感器、声表面波传感器、电声脉冲传感器、压力波传感器等。
声表面波(Surface Acoustic Wave,SAW)是一种沿弹性基体表面传播的声波,被广泛应用于压电传感器件。实际制备压电SAW传感器时,通常采用半导体加工工艺在压电基体上沉积叉值换能器(Interdigital Transducer,IDT),如图1所示。当电压加到发射IDT上时,发射IDT发射SAW沿基体表面传播,当温度、压力、气体等物理或化学参量作用到压电SAW传感器表面时,SAW传播速度/频率发生改变,并通过接收IDT测量得到。
图1 压电SAW传感器
压电SAW传感器主要基于延迟线作为其传感单元,因SAW传播速度与温度直接相关,被广泛应用于温度传感场景。
为提高传感器灵敏度,一般选取TCD较高的材料如铌酸锂、钽酸锂、石英晶体等材料。C.E.Weld等采用ST切割石英压电晶体(TCD=32×10-6/℃)作为SAW温度传感器敏感材料,分辨率可达0.22℃。另有研究者基于128°YXLiNbO3材料(TCD=75×10-6/℃)制备压电SAW温度传感器。实际应用时该类传感器受环境质量负载效应影响较大,需采用密封封装。
压电SAW温度传感器在电网中得到了实际应用,有研究者将压电声表面波温度传感器安装于某10kV配电网架空电力线路杆塔刀开关螺栓处,如图2所示,监测输电线路温度变化情况,实测结果显示传感温度数据变化趋势与实际用电情况相符。丁永生等选用(0,126°,0°)及(0,126°,39°)AT切石英构成差动式SAW温度传感器,用于配电变压器油温监测,其在常温段具有较好的线性度,在高温段具有较高的灵敏度,可有效补偿高温对器件性能的影响。
图2 基于压电SAW温度传感器测量电力杆塔温度
压电SAW传感器件也可用于气体传感,其基本原理是传感器表面敏感膜材料对特定待测气体产生吸附,导致声表面波传播速度波动,从而引起振荡频率的变化,完成对待测气体的检测。研究者先后基于YZ-LiNbO3、ST-X石英、128°YXLiNbO3等压电基体,完成对CO2、H2、NO2等气体的检测,有望用于变压器油分解气体检测和电缆脱气检测等领域。此外,压电SAW传感器在压力传感、湿度检测、角速度检测等方面也已展开实际应用。
与传统传感器相比,SAW传感器在检测精度及灵敏度等方面仍存在不足,亟需对器件性能和系统稳定性进行改善,需要从其物理结构、电路设计、器件拓扑、敏感膜选取和制备等方面来改善其精度、检测下限及稳定性。
本文编自2021年第7期《电工技术学报》,论文标题为“压电材料与器件在电气工程领域的应用”,作者为姚睿丰、王妍 等。
开启计算天文成像新篇章,清华团队研制大气湍流广域波前传感芯片
17 世纪初,人类开始将观测仪器指向遥远的宇宙,希望捕获穿越千年的光子,接收遥远星河传来的讯息。
然而,大气湍流犹如漂浮在空中的透明幽灵,干扰着光子的前进,遮掩宇宙初期的秘密。1964 年,美国物理学家理查德·费曼(Richard Feynman)指出,“湍流是经典物理学中最重要的未解决问题之一。”
大气湍流这一高度混沌系统,是湍流中最难以被捕获的存在之一,其运动模式具有极强的随机性,难以精确建模、探测和预测。
清华大学成像与智能技术交叉团队,研制广域波前计算传感芯片(WISE,Wide-field Wavefront Sensor),实现了超 1100 角秒(对角线)范围的大气湍流实时探测和预测。
该成像技术具备大视场、高分辨、强鲁棒等优势,感知范围相比广泛使用的夏克-哈特曼波前传感器提升了近千倍。
图丨大气湍流广域波前传感芯片概念图(来源:Nature Photonics)
WISE 芯片的探测能力等价于成百上千个波前传感器的总和,可广泛应用于现有光学系统,赋能大气湍流的广域探测和预测,修正大气湍流扰动,实现大范围光信号的高效采集与精准重建。
(来源:该实验室)
近日,相关论文以《基于广域波前传感芯片的大气湍流实时观测》(Direct Observation of Atmospheric Turbulence with a Video-rate Wide-field Wavefront Sensor)为题,发表于 Nature Photonics[1]。
清华大学方璐教授、戴琼海院士、吴嘉敏副教授为通讯作者,清华大学博士生郭钰铎、本科生郝钰涵、助理研究员万森为共同一作,博士后张昊、助理研究员朱来余参与了本项研究。
图丨相关论文(来源:Nature Photonics)
凌云远望,目穷千里:千角秒大气湍流实时观测
对于人眼而言,瞳孔尺寸较小,大气湍流使得星星呈现出“一闪一闪亮晶晶”;而在地基深空探测中,大口径光学望远镜受制于大气湍流,观测分辨率与信噪比大幅下降。
例如,在视宁度较差的条件下,若不做湍流矫正,8 米口径望远镜与 30 厘米口径望远镜的性能无异。大气湍流这一光子幽灵的存在,严重扰乱了光信号的传播,成为了地基深空探测的瓶颈。
百年以来,人们试图对湍流的运动过程进行精准数学建模。例如,纳维-斯托克斯方程提供了一种有效的湍流模拟方案。
然而,大气湍流过大的尺度与过高的复杂度让数值方法无从下手。因此,基于物理学的实验测量成为当前主流手段。
自适应光学技术采用夏克-哈特曼波前传感器,配以可变形镜和负反馈控制系统,率先实现了瞬态、局部波前的检测和矫正。
但是,其可见光波段的观测和矫正直径仅为 5-10 角秒,若要实现更大视场的湍流空间非一致(anisoplanatism)探测,需引入多个波前传感器对应不同视场分别进行探测,不仅系统复杂度高,而且难以大规模应用。
图丨基于 WISE 芯片的大气湍流观测系统示意图(来源:Nature Photonics)
课题组深入探究大气湍流的物理本质,其对于光子的操纵来自于非均匀折射率带来的传播角度偏折。
因此,空间-角度四维光场的高精度采集与重构可以揭示高维角度域中隐藏的湍流信息,进而突破大气湍流空间非一致观测难题。
相比传统自适应光学采用的夏克-哈特曼波前传感器,WISE 能够捕获更大视场范围内的空间非一致湍流信息,此优势是由系统架构决定的。
自适应光学的夏克-哈特曼波前传感器在共轭光瞳平面上实现直接孔径分割,其空间采样受限,只能探测一定视场范围内的平均波前。
WISE 则采用间接孔径分割方案,配置分布式微型透镜阵列,每个微透镜从不同的视场方向记录入射光子角度的信息,从而有效地最小化串扰,捕获更大视场范围内的空间非一致湍流信息。
图丨WISE 与夏克-哈特曼波前传感器的探测光路对比(来源:Nature Photonics)
在地对月观测实验中,WISE 实现了对 1100 角秒(直径)视场内约 500 个空间一致湍流波前的实时探测,速度为 30Hz。WISE 单芯片的观测性能等同于近 1000 个传统波前传感器。
除横向分布以外,WISE 芯片的探测结果还可以用于重构大气湍流在不同海拔上的高精度纵向分布,其分辨率和稳定性相比传统自适应光学均有数十倍的提升。
视频丨广域湍流波前实时观测结果(来源:Nature Photonics)
WISE 芯片打破了广域大气湍流观测的壁垒,恢复了空间非一致的大气湍流分布,揭示了大气湍流的动态规律。
致广大而尽精微:WISE 助力高精度湍流预测
在光信号的单向传播中,精确的湍流探测足以消除误差。然而,在双向交互中,湍流的快速演变带来了新的挑战。
典型的交互过程(例如空间光通信),由下行探测链路和上行补偿链路构成,由于两链路间存在时间差,无法直接根据探测结果进行补偿,而是需要预测未来时刻的湍流分布再进行补偿,即预补偿。此时,湍流预测的精度显得至关重要。
正如“致广大而尽精微”所讲述的广博深厚与精细微妙之间的辩证关系,WISE 芯片探测“广”域大气湍流的能力,可以显著提升湍流预测的“精”度,实现由“广”致“精”的转变。
下面视频所展示的是湍流分布的时间演变过程,由小视场范围的空间一致湍流变为广域的空间非一致湍流。
当我们仅观察小视场范围的湍流时,难以找到其时序演变规律,这正是基于传统自适应光学技术进行湍流预测的困难之处。
当视场扩大时,湍流的演化规律变得有迹可循。如泰勒冻结流假说所述,大范围的观测数据中,可以清晰地观测到大气湍流的整体流动,这将对实现湍流的精准预测提供强力的支撑。
基于 WISE 芯片和时-空神经网络模型,该课题组实现了大视场范围下高精度的湍流预测,预测的波前误差从 224nm 降至 109nm,相较于传统自适应光学有明显提升。
WISE 芯片为大气湍流时空动态演化规律的研究,探索了新的路径。
研究人员在中国国家天文台兴隆观测站开展了系列实验。WISE 芯片通过 80 厘米口径望远镜在 40 万公里地月观测中,实现了 1100 角秒视场内全域动态湍流高速矫正,显著提升了成像分辨率与信噪比。
(来源:Nature Photonics)
从扫描光场元成像[2]到 WISE 芯片,光子幽灵变得不再神秘,望远镜的视野能够穿透大气。
清华大学成像与智能技术交叉团队在计算成像领域持续创新,以计算赋能天文,开启计算天文成像新篇章。当视场无限,视野也将无垠。
未来,该实验室将进一步发挥元成像广域波前传感的优势,助力新一代宽视场高分辨地基光学巡天,凌云远望,目穷千里。
参考资料:
1.Guo Y, Hao Y, Wan S, Zhang H, Zhu L, Zhang Y, Wu J, Dai Q, Fang L, Direct Observation of Atmospheric Turbulence with a Video-rate Wide-field Wavefront Sensor. Nature Photonics, 2024. https://doi.org/10.1038/s41566-024-01466-3
2.Wu J, Guo Y, Deng C, Zhang A, Qiao H, Lu Z, Xie J, Fang L, Dai Q, An integrated imaging sensor for aberration-corrected 3D photography. Nature, 2022, 612(7938): 62-71. https://doi.org/10.1038/s41586-022-05306-8
排版:刘雅坤
相关问答
传感器 是怎么分类的 - agXSETZT 的回答 - 懂得按电源型式分:无源传感器、有源传感器;按输出型式分:数字式传感器、模拟式传感器;按传感基理分:结构型传感器、物型传感器、复合型传感器;按测量原...
超声波传感器 的工作原理是什么?[最佳回答]超声波传感器的工作原理是利用声波介质对被检测物进行非接触式无磨损的检测。以下是扩展介绍:1、超声波传感器是将超声波信号转换成其他能量信号(通...
超声波传感器 的工作原理[最佳回答]超声波传感器的工作原理如下:超声波传感器的主要材料是压电晶体和镍铁铝合金。由压电晶体构成的超声波传感器是一种可逆传感器,它可以将电能转化为...
脉冲感应器功能?曲轴传感器是测量发动机转速。它由一个永久磁体和一个带有软铁芯的感应线圈构成。飞轮上装有一个齿圈作为脉冲传感器。在电磁感应式传感器与齿圈之间只有一...
motus 传感器 工作原理?Motus波浪传感器是一款新型用于浮标的方向波传感器,主要用于Tideland波浪浮标、YSIEMM2.0波浪浮标,或者第三方的集成。他具有浮标荷载补偿、传感器位置补偿...
为什么接收 传感器 在 波 腹位置时观察到的信号最明显?接收传感器在波腹位置观察到的信号最明显,因为波腹是波动中振幅最大的位置。当传感器置于此处,它能捕获到最大振幅的信号,使得信号强度最强,从而更容易被识别...
进气管绝对压力 传感器 的类型_车坛压敏电阻式、2。电容式、3。膜盒式、4。表面弹性波式,应用较多的是压敏电阻式和电容式两种。1...压敏电阻式、2。电容式、3。膜盒式、4。表面弹性...
汽车ABS 传感器 分哪几种类型?ABS传感器就是一个转速传感器,转速传感器按类型分有磁电式、霍尔式、光电式这三种,但是应用在ABS传感器上的,通常就是磁电式的。;磁电式的ABS传感器按结构分...
手机超声 波 距离 传感器 工作原理?超声波发射器按一定方向发射超声波,并与发射时间同时计时。超声波在空气中传播,在途中遇到障碍物后立即返回。超声波接收器接收到反射波后立即停止计时。超声...
测控仪器专业有哪些应用实例 - 小红薯2A0C7AEC 的回答 - 懂得测控技专业培养具备与控制方力,能在国民经济各部门从事测量与控制领域内有关技术、仪器与系统的设计制造、科技开发、应用研究、运行管理等方面的高...