设计热敏传感器 温度问题为您解决(一)温度传感基本原理
温度问题为您解决(一)温度传感基本原理
在个人电子产品、工业或医疗应用的设计中,工程师必须应对同样的挑战,即如何提升性能、增加功能并缩小尺寸。除了这些考虑因素外,他们还必须仔细监测温度以确保安全并保护系统和消费者免受伤害。
众多行业的另一个共同趋势是需要处理来自更多传感器的更多数据,进一步说明了温度测量的重要性:不仅要测量系统或环境条件,还要补偿其他温度敏感元件,从而确保传感器和系统的精度。另外一个好处在于,有了精确的温度监测,无需再对系统进行过度设计来补偿不准确的温度测量,从而可以提高系统性能并降低成本。
温度设计挑战分为三类
温度监测: 温度传感器提供有价值的数据来持续跟踪温度条件,并为控制系统提供反馈。此监测可以是系统温度监测或环境温度监测。在一些应用中,我们可以看到设计挑战的特点是需要在控制回路中同时实现这两种监测。这些监测包括系统温度监测、环境温度监测以及身体或流体温度监测。
温度保护: 在多种应用中,一旦系统超过或低于功能温度阈值,便需要采取措施。温度传感器在检测到事先定义的条件时提供输出警报以防止系统损坏。在不影响系统可靠性的情况下提升处理器吞吐量是可行的。系统经常过早启动安全热关断,结果造成高达5°C甚至10°C的性能损失。当系统超过或低于功能温度阈值时,工程师可以自主启动实时保护措施。
温度补偿: 温度传感器可以在正常工作期间随温度变化最大限度提高系统性能。监测和校正其他关键组件在发热和冷却时的温漂可降低系统故障的风险。
本系列文章将提供一些TI应用简介,由此说明使用不同温度传感技术的各种应用的设计注意事项。首先介绍主要的温度挑战,然后重点说明各种应用的设计注意事项,评估温度精度和应用尺寸之间的权衡,同时讨论传感器放置方法。
温度传感器基本原理
在嵌入式系统中,总是需要更高的性能、更多的功能和更小的外形尺寸。鉴于这种需求,设计人员必须监测整体温度以确保安全并保护系统。在应用中集成更多传感器进一步推动了对温度测量的需求,不仅要测量系统条件或环境条件,还要补偿温度敏感元件并保持整体系统精度。
温度设计注意事项
实现高效温度监测和保护的注意事项包括:
•精度。传感器精度表示温度与真实值的接近程度。在确定精度时,必须考虑所有因素,包括采集电路以及整个工作温度范围内的线性度。
•尺寸。传感器的尺寸会对设计产生影响,而分析整个电路有助于实现更优化的设计。传感器尺寸还决定了热响应时间,这对于体温监测等应用非常重要。
•传感器放置。传感器的封装和放置会影响响应时间和传导路径;这两个因素都对高效温度设计至关重要。
工业中常见的温度传感器技术包括集成电路 (IC) 传感器、热敏电阻、RTD和热电偶。下表比较了在为设计挑战评选适合的技术时参考的主要特性。
IC传感器
IC温度传感器取决于硅带隙的预测温度依赖性。如下图和公式所示,精密电流为内部正向偏置P-N结提供电源,从而产生对应于器件温度的基极-发射极电压变化 (ΔVBE)。
硅带隙的温度依赖性
鉴于硅的可预测行为,IC可在宽泛的温度范围内提供高线性度和精度(高达 ±0.1°C)。这些传感器可以集成系统功能,例如模数转换器 (ADC) 或比较器,最终可以降低系统复杂性并减小整体占用空间。这些传感器通常采用表面贴装和穿孔封装技术。
热敏电阻
热敏电阻是无源组件,其电阻很大程度上取决于温度。热敏电阻分为两类:正温度系数 (PTC) 和负温度系数 (NTC)。
虽然热敏电阻针对板载和非板载温度传感方式提供了多种封装选择,但与IC传感器相比,其实现方案通常需要更多的系统组件。硅基PTC热敏电阻具有线性特征,而NTC热敏电阻具有非线性特征,通常会增加校准成本和软件开销。
典型的热敏电阻实现方案
上图显示了典型的热敏电阻实现方案。通常很难确定热敏电阻的真实系统精度。NTC系统误差的影响因素包括NTC容差、偏置电阻器(易受温漂影响)、ADC(可能导致量化误差)、NTC固有的线性化误差以及基准电压。
RTD
RTD是由铂、镍或铜等纯净材质制成的温度传感器,具有高度可预测的电阻/温度关系。
复杂的四线RTD电路
铂RTD可在高达600°C的宽泛温度范围内提供高精度和高线性度。如上图所示,一个采用模拟传感器的实现方案中包括复杂的电路和设计挑战。最终,为了实现精确的系统,需要进行复杂的误差分析,这是因为产生影响的组件数量较多,而这也会影响系统的整体尺寸。RTD还需要在制造期间进行校准,而后每年进行现场校准。
RTD 系统误差的影响因素包括RTD容差、自发热、ADC量化误差和基准电压。
热电偶
热电偶由两个不同的电导体组成,这两个电导体在不同的温度下形成电结。由于热电塞贝克效应,热电偶产生与温度相关的电压。该电压转换为热端和冷端之间的温差。
带有冷端补偿 (CJC) 温度传感器的热电偶
必须知道冷端的温度才能获得热端温度。由于有两个系统具有相互影响的单独容差和能力,这里的精度将受到限制。上图显示了一个典型的CJC实现方案,其中采用热电偶和外部传感器来测定热端温度。
热电偶不需要外部激励,因此不会受到自发热问题的影响。它们还支持极端温度 (>2,000°C)。
虽然热电偶坚固耐用且价格低廉,但它们却需要额外的温度传感器来支持CJC。热电偶往往具有非线性特征,并且对于热电偶与电路板连接处的寄生结非常敏感。对热电偶进行数字化容易受到先前讨论的 ADC 误差的影响。
点击了解更多,快速定位TI模拟专栏,查看更多TI传感器类产品的最新、最全资料。同时,在未来的几篇文章中,我们会重点说明各种应用的设计注意事项,评估温度精度和应用尺寸之间的权衡,同时讨论传感器放置方法。
川东磁电申请电车温敏传感器专利,防护结构能保证热敏传感器的正常使用
金融界2024年1月31日消息,据国家知识产权局公告,佛山市川东磁电股份有限公司申请一项名为“一种带有防护结构的电车温敏传感器“,公开号CN117470403A,申请日期为2023年11月。
专利摘要显示,本发明涉及温敏传感器领域,具体公开了一种带有防护结构的电车温敏传感器,包括固定架,所述固定架的上端固定连接有安装架,所述安装架的下端后侧转动连接有螺栓,所述螺栓的上端贯穿安装架,所述固定架的正面开设有凹槽,所述凹槽的内部插接有温敏电阻;通过将温敏电阻插入凹槽的内部,并通过调节组件调整限位架的位置,使限位架对温敏电阻起到限位作用,以将温敏电阻稳定在凹槽中,而通过支撑组件对温敏电阻起到支撑作用,从而将温敏电阻夹持在支撑组件和限位架之间,以避免在颠簸中出现温敏电阻位移的情况,保证热敏传感器的正常使用,而且通过限位架可对温敏电阻起到防护作用,同时可使温敏电阻在安装、拆卸时都更加方便。
本文源自金融界
相关问答
利用负温度系数 热敏电阻 制作的热 传感器 ,它的电阻随温度升高...[最佳回答]根据热敏电阻的特点可知,当热敏电阻所在区域的温度降低,阻值增大,温度升高时,电阻减小;当热敏电阻附近的温度大于20℃变为25℃时,热敏电阻的阻值变...
热敏传感器 类型?热敏传感器是能够将温度变化转换为电信号的一类传感器,根据其工作原理和应用场景的不同,可以分为以下几种类型:1.热电偶:热电偶是由两种不同金属材料制...
空调 热敏传感器 怎么接电阻?连接空调热敏传感器和电阻需要根据具体的电路和传感器类型来确定连接方式。一般情况下,连接热敏传感器和电阻的方法如下:1.确保传感器和电阻的电阻值匹配:热...
ntc 热敏 电阻温度 传感器 的测量方法?将万用表拨到欧姆挡,用鳄鱼夹代替表笔分别夹住热敏电阻器的两个引脚,记下此时的阻值;然后用手捏住热敏电阻器,观察万用表示数,此时会看到显示的数据随着温...
热敏 电阻的阻值是多少?大部分的热敏电阻的阻值随着温度的升高而减小;也有一部分随着温度的升高而增大;热敏电阻的计算公式为:Rt=R*EXP(B*(1/T1-1/T2))对上面的公式解释如下:1...
风扇 热敏 电阻正确接法?风扇热敏电阻的正确接法:1.测温信号的连接。温度信号一般采用热敏电阻作为温度传感器进行温度采样。以Tt金星12型风扇为例,其温度变化导致热敏电阻的阻值变...
理光7502 热敏 电阻怎么更换?理光7502热敏电阻更换方法如下:把加热组件拆下来,注意,只要拆掉正对的左右两颗大螺丝,另外上下方的两颗小的不用拆,不然小零件弄掉了就不用找了,再把右上方...
ds18b20数字温度 传感器 与传统 热敏 电阻有什么不同?DS18B20数字温度传感器(DigitalTemperatureSensor)与传统热敏电阻相比有以下不同:1.数字输出:DS18B20输出数字信号,而热敏电阻是模拟信号。2.高精度:....
热敏传感器 主要是应用了半导体材料制成的热敏电阻,热敏电阻...[最佳回答](1)温度升高电阻变小、电流变大、磁性变强、开关接触1点;S接1端使电路导通,报警器报警,所以S该接1端.(2)P往左移电阻变大,在温度更高时Rt更小...
气动 热敏 式 传感器 原理?原理:1.热敏电阻传感器的过热保护过热保护分直接保护利间接保护。对小电流场合,可把热敏电阻传感器直接串人负载中,防止过热损坏以保护器件,对大电流场合,...