上海羊羽卓进出口贸易有限公司

ccd图像传感器应用 CCD图像传感器——颠覆人类记录影像的方式

发布时间:2024-11-24 04:11:48

CCD图像传感器——颠覆人类记录影像的方式

维纳德 • 波利(左)和乔治 • 史密斯(右)在1969年发明了CCD技术

来源:文献[1]

2009年,维纳德 • 波利(Willard S. Boyle)和乔治 • 史密斯(George E. Smith)因为发明CCD(Charge-coupled Device,电荷耦合元件,或称为CCD图像传感器)而获得当年的诺贝尔物理学奖。

诺贝尔奖委员会主席约瑟夫·诺德格伦(Joseph Nordgren)在宣布该奖项的新闻发布会上说:“当今社会的记录影像的方式完全基于CCD的研究。” “这项研究的实际意义是巨大的……它改变了我们的生活,不仅在科学领域,而且在整个社会领域。”

胶片时代

在1975年数码相机发明以前,人们记录影像的方式是使用胶片。它的工作过程可以概述为:光线经过照相机镜头,然后由快门的速度来决定曝光量的多少。光线使胶片上的银盐产生化学反应,最后在胶片上生成影像的潜影。经过暗房里的冲洗形成影像并制成底片。利用调配将底片显影最终印出。

胶片摄影需要经过复杂的处理才能得到影像

[图片来源自网络]

CCD的发明

1969年10月,史密斯和波利在贝尔实验室吃午餐时,讨论产生了灵感。午餐后继续探讨,当天就构想出了CCD这个无处不在的成像发明。不过,从造出样机到研制出科学家和摄影师都可以使用的实用技术,这条路漫长而艰难。尽管CCD后来主宰了天文学领域,但它在刚发明时分辨率非常低,根本派不上实际用场。当时CCD的信噪比很差,不大容易看得出它是否会有远大的前程。

第一个CCD器件

来源:文献[4]

第一个CCD集成器件

来源:文献[4]

早期的线性成像CCD

来源:文献[4]

在接下来的时间里,成百上千的科学家和工程师努力奋斗,逐步将CCD推向实用化,包括美国的仙童(Fairchild)、柯达泰克(Tektronix)和德州仪器(Texas Instruments,TI),以及日本的夏普(Sharp)、索尼(SONY)、东芝(Toshiba)和日本电气(NEC)等公司都作出了许多贡献。航天、科学和消费等方面的应用,都得益于为解决CCD问题而从不同渠道投入的经费,但是问题还是很棘手,那是一条非常艰苦的发展之路。

CCD的原理

CCD是一种半导体器件,能够把光学影像转化为数字信号。 CCD上植入的微小光敏物质称作像素(Pixel)。像素数越高,面积越大,成像质量就越高越清晰。CCD上有许多排列整齐的电容,能感应光线、储存信号并将影像转变成数字信号。经由外部电路的控制,每个小电容能将其所带的电荷转给相邻的图像处理器来形成图像。

MOS电容器是构成CCD的最基本单元,它是金属—氧化物—半导体(MOS)器件中结构最为简单的。

MOS电容器

来源:文献[4]

CCD的基本工作过程主要是信号电荷的产生、存储、转移和检测:

(1)信号电荷的注入(产生):在CCD中,电荷注入的方式可分为光注入和电注入两类。当光照射到CCD硅片上时,在栅极附近的半导体体内产生电子-空穴对,多数载流子被栅极电压排斥,少数载流子则被收集在势阱中形成信号电荷。

背照式光注入

来源:文献[8]

所谓电注入就是CCD通过输入结构对信号电压或电流进行采样,然后将信号电压或电流转换为信号电荷注入到相应的势阱中。电注入常用的有电流注入和电压注入两种方式。

电注入方式

来源:文献[8]

(2)信号电荷的存储:CCD工作过程的第二步是信号电荷的收集,就是将入射光子激励出的电荷收集起来成为信号电荷包的过程。

当向SiO表面的电极加正偏压时,P型硅衬底中形成耗尽区(势阱),耗尽区的深度随正偏压升高而加大。其中的少数载流子(电子)被吸收到最高正偏压电极下的区域内,形成电荷包(势阱)。对于N型硅衬底的CCD器件,电极加正偏压时,少数载流子为空穴。

电荷存储

来源:文献[8]

(3)信号电荷的传输(耦合):CCD工作过程的第三步是信号电荷包的转移,就是将所收集起来的电荷包从一个像元转移到下一个像元,直到全部电荷包输出完成的过程。

电荷转移

来源:文献[7]

三相CCD中电荷的转移方式

(a)初始状态;(b) 电荷由①电极向②电极转移;(c) 电荷在①、②电极下均匀分布;(d) 电荷继续由①电极向②电极转移;(e) 电荷完全转移到②电极;(f) 三相交叠脉冲

来源:文献[8]

(4)信号电荷的检测:CCD工作过程的第四步是电荷的检测,就是将转移到输出级的电荷转化为电流或者电压的过程。

其中电荷输出类型,主要有三种:1)电流输出;2)浮置栅放大器输出;3)浮置扩散放大器输出。

电荷检测电路

来源:文献[8]

CCD工作过程示意图

来源:文献[6]

CCD图像传感器是按一定规律排列的MOS(金属—氧化物—半导体)电容器组成的阵列。 在P型或N型硅衬底上生长一层很薄(约120nm)的二氧化硅,再在二氧化硅薄层上依次序沉积金属或掺杂多晶硅电极(栅极),形成规则的MOS电容器阵列,再加上两端的输入及输出二极管就构成了CCD芯片。

按照像素排列方式的不同,可以将CCD分为线阵和面阵两大类。

线阵CCD每次扫描一条线,为了得到整个二维图像的视频信号,就必须用扫描的方法实现。线阵CCD又分为单沟道线阵CCD和双沟道线阵CCD。

单沟道线阵CCD:转移次数多、效率低。只适用于像素单元较少的成像器件。

双沟道线阵CCD:转移次数减少一半,它的总转移效率也提高为原来的两倍。

线阵CCD

来源:文献[6]

面阵CCD:按照一定的方式将一维线阵CCD的光敏单元及移位寄作器排列成二维阵列。就可以构成二维面阵CCD。面阵CCD同时曝光整个图像。

帧转移面阵CCD——优点:电极结构简单,感光区面积可以很小。缺点:需要面积较大暂存区。

帧转移面阵CCD结构及工作过程

来源:文献[6]

隔列转移面阵CCD——优点:转移效率大大提高。缺点:结构较为复杂。

隔列转移面阵CCD结构及工作过程

来源:文献[6]

CCD功能示意图

来源:文献[7]

CCD芯片结构

图片来源自网络

CCD的发展

CCD的发明具有划时代的意义,它的出现使得人类捕捉信息达85%的眼睛这个重要器官得到了极大扩展与延申。

促进CCD快速发展主要有三个因素:首先,CCD的尺寸小,重量轻,消耗功率少,超低噪声,动态范围较大,线性良好,可靠,耐用。第二,这种器件在形状、快速、外形质量和成本方面能与真空管抗衡。第三,空间成像应用需要新的探测器。

20世纪70年代,美国贝尔实验室成功研制了世界上第一只CCD,它的诞生使成像、摄像等技术呈现一次飞跃。1973年,仙童公司把CCD技术应用于商业领域,制造出第一只商用CCD成像器件,这开辟了CCD在工业领域的道路。80年代后期,CCD在大多数视频应用中取代了电子管。进入90年代后,CCD应用于分辨成像,广泛应用于专业电子照相、空间探测、X射线成像及其他科研领域。

两种CCD产品

图片来源自网络

市场应用的结果证明CCD是科学领域的一项重大技术变革。它在被忽视数十年之后,能获得2009年的诺贝尔奖可谓实至名归。

变革不停

但是,科学技术的进步一刻也不曾停止。1998年,CMOS图像传感器(Complementary Metal-Oxide-Semiconductor Image Sensor,CIS)诞生了。CMOS的光电信息转换功能与CCD的基本相似,区别就在于这两种传感器的光电转换后信息传送的方式不同。CMOS具有读取信息的方式简单、输出信息速率快、耗电少(仅为CCD芯片的1/10左右)、体积小、重量轻、集成度高、价格低等特点。从2008年开始,各大厂商都开始逐渐把背照式CMOS使用在不同的数码相机产品上。从此,CMOS图像传感器迅速发展。

CMOS取代CCD

图片来源自网络

科技不断发展,相信在未来的某一天,一定会有更多种类的传感器出现,这也只是时间的问题,到那时我们回望过去,看看我们曾经经历过的胶片时代、CCD时代和CMOS时代,一定会由衷的感叹科技日新月异的飞速发展。

参考文献

https://www.nobelprize.org/prizes/physics/2009/summary/

张汝京. 半导体产业背后的故事[M]. 清华大学出版社, 2013.

董艺婷. 摄影技术的发展及对当代社会的作用研究[D].哈尔滨师范大学,2016.

Smith, G. E. (2009). "The invention and early history of the CCD." Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 607(1): 1-6.

https://www.microscopyu.com/digital-imaging/introduction-to-charge-coupled-devices-ccds

https://www.mega-9.com/tech/tech-45.html

https://specinstcameras.com/what-is-a-ccd/

王庆有. 图像传感器应用技术[M]. 电子工业出版社, 2019.

https://www.docin.com/p-505990925.html

http://dc.yesky.com/88/31913588all.shtml

转载内容仅代表作者观点

不代表中科院物理所立场

来源:中科院半导体所

编辑:荔枝果冻

简单易懂!三种CCD图像传感器最全介绍来了

CCD的中文全称是电荷耦合元件,是一种半导体成像器件。通过被摄物体的图像经过镜头聚焦至CCD芯片上的原理制成了CCD摄像机,其中的核心原件就是CCD图像传感器。

CCD图像传感器作为一种新型光电转换器现已被广泛应用于摄像、图像采集、扫描仪以及工业测量等领域。作为摄像器件,与摄像管相比,CCD图像传感器有体积小、重量轻、分辨率高、灵敏度高、动态范围宽、光敏元的几何精度高、光谱响应范围宽、工作电压低、功耗小、寿命长、抗震性和抗冲击性好、不受电磁场干扰和可靠性高等一系列优点。

CCD是数码相机的电子眼,它革新了摄影术,光可以被电子化地记录下来,取代了胶片。这一数字形式极大地方便了对图像的处理和发送,”诺贝尔奖评选委员会称赞说,“无论是我们大海中深邃之地,还是宇宙中的遥远之处,它都能给我们带来水晶般清晰的影像。”

CCD图像传感器发展历程

CCD图像传感器于1969年在贝尔试验室研制成功,之后由日商等公司开始量产,其发展历程已经将近30多年,从初期的10多万像素已经发展至目前主流应用的500万像素。CCD又可分为线型(Linear)与面型(Area)两种,其中线型应用于影像扫瞄器及传真机上,而面型主要应用于数码相机(DSC)、摄录影机、监视摄影机等多项影像输入产品上。

发明:

伴随着数码相机、带有摄像头的手机等电子设备风靡全球,人类已经进入了全民数码影像的时代,每一个人都可以随时、随地、随意地用影像记录每一瞬间。带领我们进入如此五彩斑斓世界的,就是美国科学家威拉德·博伊尔和乔治·史密斯发明的CCD(电荷耦合器件)图像传感器。

百多年来,伴随着暗箱、镜头和感光材料制作不断取得突破,以及精密机械、化学技术的发展,照相机的功能越来越强大,使用越来越方便。但是,直到几十年前,人们依然只能将影像记录在胶片上。拍摄影像慢慢普及,但即时欣赏、分享、传递影像还非常困难。1969年,博伊尔和史密斯极富创意地发明了一种半导体装置,可以把光学影像转化为数字信号,这一装置,就是CCD图像传感器。

发展历程:

CCD图像传感器的发明,实际上是应用爱因斯坦有关光电效应理论的结果,即光照射到某些物质上,能够引起物质的电性质发生变化。但是从理论到实践,道路却并不平坦。科学家遇到的最大挑战,在于如何在很短的时间内,将每一个点上因为光照而产生改变的大量电信号采集并且辨别出来。经过多次试验,博伊尔和史密斯终于解决了上述难题。他们采用一种高感光度的半导体材料,将光线照射导致的电信号变化转换成数字信号,使得其高效存储、编辑、传输都成为可能。简单地说,CCD图像传感器就像是胶片一样,有了它,人们就再不用耗时费力地去冲洗胶片了。

三种CCD图像传感器的优缺点

CCD(电荷耦合器件)图像传感器体系可分为全帧(FF)、帧传输(FT)和行间传输(IT)三种CCD架构。

全帧(Full-Frame)CCD

半导体区域既可以作为光电元件,也可以作为电荷转移器件,这有点违反直觉,但这正是FF CCD中发生的事情。在集成过程中,像素位置响应入射光子积累电荷,在集成之后,电荷包垂直地通过像素位置向水平移位寄存器移动。

一般情况下,我们通过应用精心定时的时钟信号来获得CCD像素数据,这些时钟信号依次在器件的电荷传输结构中产生电位阱和电位屏障。在全帧CCD中,我们需要能够将这些控制电压应用到同样起光电探测器作用的区域,因此,栅极电极由透明多晶硅制成。

全帧CCD相对而言比较简单且易于制造,并且它们允许整个CCD表面具有光敏性。这使硅的给定区域中可以包含的像素数量最大化,同时也使每个像素中实际上能够将光子转换为电子的部分最大化。

然而,一个主要的限制是需要一个机械快门(或一个同步的、短时间的光源称为频闪)。CCD的光激活区并不会因为你已经决定是时候执行读出而停止光激活。如果没有在曝光周期完成后阻挡入射光的机械快门,则在(有意)集成期间生成的电荷包将被读出期间到达的光损坏。

这是全帧CCD的基本架构

帧传输(Frame-Transfer)CCD

一般来说,我们更喜欢用电子方式控制曝光,快门(像任何其他快速移动的高精度机械设备一样)使设计更加复杂,最终产品更加昂贵,整个系统更容易出现故障。在电池供电的应用中,驱动物理物体所需的额外能量也是不可取的。

FT-CCD允许我们保持FF-CCD的一些优点,同时(几乎)不需要快门。这是通过将FF CCD分成两个大小相等的部分来实现的。其中一个部分是普通的光敏成像阵列,另一个部分是屏蔽入射光的存储阵列。

在集成之后,用于所有像素的电荷包被快速地传输到存储阵列,然后在存储阵列中发生读出。当读取存储位置时,活动像素可以为下一图像累积电荷,这使得帧传输CCD能够获得比全帧CCD更高的帧速率。

说FT架构几乎消除了快门,因为无快门设计会遇到一个称为垂直涂抹的问题。电荷包从活动像素到存储位置的传输很快,但不是瞬间发生的,因此在垂直传输期间到达传感器的光可以改变图像信息。

FT架构的主要缺点是成本较高,并且相对于图像质量而言面积增大,因为基本上是使用FF传感器,然后将像素数减少两倍。

帧传输CCD在全帧架构中增加了一个存储阵列

线间传输(Interline-Transfer)CCD

我们需要的最后一个主要的架构改进是将集成电荷快速转移到存储区域,从而将污迹降低到可以忽略的程度。线间传输CCD通过提供与每个光活动位置相邻的存储(和传输)区域的网络来实现这一点。曝光完成后,传感器中的每个电荷包同时传输到非光敏垂直移位寄存器中。

因此,它的CCD能够以最小的拖影实现电子快门,并且像FT-ccd一样,它们可以在读出期间集成,从而保持较高的帧速率能力。然而,如果光生电荷在读出过程中从光活性柱泄漏到相邻的垂直移位寄存器中,则可能发生一些涂抹。如果应用程序不需要高帧速率,则可以通过延迟积分直到读出完成来消除此问题。

线间CCD不需要帧传输CCD中使用的大存储部分,但它们引入了一个新的缺点:传感器成为将光子转换为电子的效率较低的手段,因为每个像素位置现在都由光电二极管和垂直移位寄存器的一部分组成。换言之,部分像素对光不敏感,因此相对于落在像素区域上的光的量产生较少的电荷。这种灵敏度的损失通过在传感器上添加将入射光集中到每个像素的光活动区域的微小透镜而大大减轻,但是这些“微透镜”有其自身的一系列困难。

在行间传输架构中,存储(和垂直传输)区域位于光活性柱之间。

结语:

希望这篇文章能帮助广大读者理解CCD图像传感器,以及能在设计CCD图像传感器时做好权衡。全帧CCD可能看起来是最“原始”的类型,但它们仍然是不需要高帧速率的系统中的首选,并且可以容忍闪光灯或机械快门的使用。帧传输CCD和线间传输CCD具有更多的用途,在某些应用中具有关键的优势。

近日,深耕行业20余年的传感器专家网,最新成立了一个传感器行业专业社群——【传感器智汇圈】,您可添加传感器专家网WX号(15012882502)来跟我们一起交流。

相关问答

CCD图像传感器 概念?

CCD传感器是ChargeCoupledDevice的缩写,也就是电荷藕合器件图像传感器,没错就是一种用于图片的传感器,可以将光线转变成电荷,之后在转变成数字信好,一般...

ccd图像传感器 输出信号特点?

输出数字信号:电荷耦合器件图像传感器CCD(ChargeCoupledDevice),它使用一种高感光度的半导体材料制成,能把光线转变成电荷,通过模数转换器芯片转换成数...

光电 传感器 有什么功能 - cindyzhang 的回答 - 懂得

光电传感器是光敏传感器的一种,主要是根据被测物上光信号的变化而工作,然后将光信号进行放大转换成电信号。而且光电传感器也有细分成很多种,而光电...

Ccd 是啥?

CCD,即电荷耦合器件(Charge-CoupledDevice),是一种在数码相机、数码摄像机、扫描仪、天文望远镜等领域广泛应用的光电传感器。它由一系列电容构成,可以将光...

ccd 器件工作原理包括哪四个过程?

CCD工作过程有四个。(1)信号电荷产生;(2)信号电荷存储;(3)信号电荷传输;(4)信号电荷检测与输出。CCD图像传感器是按一定规律排列的MOS电容器组成...CCD...

ccd 模式是什么意思?

ccd是ChargeCoupledDevice(电荷耦合元件)的缩写,是一种将图像转换为电信号的半导体元件。大小约为长宽各1厘米左右,由类似棋盘的格状排列的小像素(pixel)组成...

ccd 是什么东西?

CCD,英文全称:Charge-coupledDevice,中文全称:电荷耦合元件。可以称为CCD图像传感器。CCD是一种半导体器件,能够把光学影像转化为数字信号。CCD上植入的微...

富士相机 CCD 是干什么的-ZOL问答

CCD英文Charge-coupledDevice的缩写,中文全称“电荷耦合元件”或者(在相机、摄像机中称为)“CCD图像传感器”。它是一种半导体器件,能够把光学影像转化为电...

ccd图像传感器 由什么制成?

CCD(Charge-CoupledDevice)图像传感器是由硅材料制成的。硅是一种半导体材料,具有良好的光电转换性能,适合用于制造图像传感器。CCD图像传感器的制造过程包...

ccd 相机需要什么配件?

必须有CCD图像传感器必须有驱动器,就是将TTL/LVTTL的时序信号转换为CCD所需的高低电压驱动信号。必须要有时序发生器,有专门的时序芯片,也可以用嵌入式处理...

展开全部内容