上海羊羽卓进出口贸易有限公司

压电式传感器实验 什么是压电超声传感器?看完就懂了

发布时间:2025-01-19 17:01:35

什么是压电超声传感器?看完就懂了

压电材料作为感知电力设备放电、振动等信号的关键材料,在电力设备振动监测、放电检测、探伤、温度测量、电压传感等领域得到广泛应用。

压电材料在压电传感器件中的应用多种多样,其核心在于机械能和电能的相互转换:压电材料受机械振动(压电振动传感器)、声波传导(压电声传感器)等机械外力作用时晶格形变,引起极化状态的变化,输出传感电信号,或通过对压电材料受电场作用产生的形变进行测量来反映电场大小(压电电压传感器)。

声波信号可较好地实现与电信号的耦合与相互转换。根据声波激励、传播和耦合方式的不同,压电声传感器可分为压电超声传感器、声表面波传感器、电声脉冲传感器、压力波传感器等。

根据传感器耦合方式,超声传感器可分为接触式和非接触式,如图1所示。接触式超声传感器主要用于变压器、组合电器等大型电力设备监测,非接触式超声传感器则主要用于电力电缆、开关柜等电力设备检测。

根据国家电网企业标准《Q/GDW 11061—2017 局部放电超声波检测仪技术规范》要求,对于接触式超声传感器(不含前置增益),其峰值灵敏度一般不小于30dB(V/(m/s)),均值灵敏度一般不小于40dB(V/(m/s)),可以测到不大于40dB的传感器输出信号;对于非接触式超声传感器,在距离声源1m时,可以测到声压级不大于35dB的超声波信号。

图1 超声传感器的两种检测形式

由于受制造工艺限制、安装不当等因素的影响,电力设备难免会产生表面附着物、内部气泡、表面裂纹等缺陷,进而导致局部放电的发生。在电网运维周期中,主要通过超声传感器进行电力设备局部放电检测。

当电力设备内部绝缘发生局部放电时,会相应产生超声波信号,超声波信号沿绝缘介质和金属导体传导至外壳,并通过介质向外界传播。通过在电力设备外壳或设备附近安装如图2所示的压电超声传感器,可以耦合收集到局部放电产生的超声信号,进而判断电力设备放电情况。

图2 压电超声传感器

黎大健等以220kV的气体金属封闭开关设备(Gas Insulated Switchgear, GIS)母线腔体为研究对象,模拟了金属突起和金属悬浮等缺陷,使用谐振频率30kHz的压电超声传感器,通过对比超声信号时域波形、频谱、PRPD图谱中特征量,实现对产生局部放电的缺陷类型的判断,检测灵敏度达到10pC。

另针对电力变压器局部放电的精准定位问题,李继胜等基于超声波相控阵理论,研制了16×16阵元的平面超声波相控阵压电传感器阵列,传感器中心频率为150kHz,带宽达到100kHz。使用压电声源和油间隙放电等模拟实验对传感器阵元的性能进行了实测,结果表明,该传感器能够对变压器局部放电产生的超声波信号进行灵敏接收和定位。但具体应用时,仍需对超声波传播时会产生的反射、折射等复杂问题开展进一步研究。

此外,压电超声传感器也广泛应用于电力设备内部缺陷检测,其原理为通过检测超声导波在试件中的传播特性,实现对各种材料试件的宏观缺陷、组织结构、力学性能变化进行检测和表征,具有灵敏度高、衰减小、可定位的优点,受到研究者密切关注。

马君鹏等基于压电超声导波理论,提出了一种盆式绝缘子缺陷检测及定位方法。检测装置如图3a所示,包括超声导波检测仪、上位机和7个压电超声传感器(1个谐振频率为100kHz用于产生激励导波信号的发射型传感器,6个进行导波信号接收的接收型传感器)。

通过分析Lamb波在盆式绝缘子中的传播特性(见图3b、图3c),实现对绝缘子内部气泡、外部附着物及裂纹等缺陷的检测,且能够在微小缺陷引起局部放电等其他故障前及时预警,并精确定位缺陷位置,为盆式绝缘子损伤机理的研究和材料、工艺及安装方法的改进提供数据基础。

图3 基于压电超声导波检测绝缘子缺陷

另有研究者同样基于超声导波技术,设计了如图4所示的PZT—5压电超声传感器件组,用于输电线杆塔拉线棒缺陷的无损检测。通过对拉线棒中超声导波传播特性分析后,选取L(0,1)模态研究了不同截面损失率下缺陷和端面回波幅值的对应关系,实现了对拉线棒缺陷的准确识别。

图4 检测拉线棒缺陷的压电超声传感器

本文编自2021年第7期《电工技术学报》,论文标题为“压电材料与器件在电气工程领域的应用”,作者为姚睿丰、王妍 等。

压电式传感器基础知识解析

压电式传感器是基于压电效应的传感器。是一种自发电式和机电转换式传感器。它的敏感元件由压电材料制成。压电材料受力后表面产生电荷。此电荷经电荷放大器和测量电路放大和变换阻抗后就成为正比于所受外力的电量输出。压电式传感器用于测量力和能变换为电的非电物理量。它的优点是频带宽、灵敏度高、信噪比高、结构简单、工作可靠和重量轻等。缺点是某些压电材料需要防潮措施,而且输出的直流响应差,需要采用高输入阻抗电路或电荷放大器来克服这一缺陷。

压电效应

压电效应可分为正压电效应和逆压电效应。正压电效应是指:当晶体受到某固定方向外力的作用时,内部就产生电极化现象,同时在某两个表面上产生符号相反的电荷;当外力撤去后,晶体又恢复到不带电的状态;当外力作用方向改变时,电荷的极性也随之改变;晶体受力所产生的电荷量与外力的大小成正比。压电式传感器大多是利用正压电效应制成的。逆压电效应是指对晶体施加交变电场引起晶体机械变形的现象,又称电致伸缩效应。用逆压电效应制造的变送器可用于电声和超声工程。压电敏感元件的受力变形有厚度变形型、长度变形型、体积变形型、厚度切变型、平面切变型 5种基本形式(见图)。压电晶体是各向异性的,并非所有晶体都能在这 5种状态下产生压电效应。例如石英晶体就没有体积变形压电效应,但具有良好的厚度变形和长度变形压电效应。

压电材料

它可分为压电单晶、压电多晶和有机压电材料。压电式传感器中用得最多的是属于压电多晶的各类压电陶瓷和压电单晶中的石英晶体。其他压电单晶还有适用于高温辐射环境的铌酸锂以及钽酸锂、镓酸锂、锗酸铋等。压电陶瓷有属于二元系的钛酸钡陶瓷、锆钛酸铅系列陶瓷、铌酸盐系列陶瓷和属于三元系的铌镁酸铅陶瓷。压电陶瓷的优点是烧制方便、易成型、耐湿、耐高温。缺点是具有热释电性,会对力学量测量造成干扰。有机压电材料有聚二氟乙烯、聚氟乙烯、尼龙等十余种高分子材料。有机压电材料可大量生产和制成较大的面积,它与空气的声阻匹配具有独特的优越性,是很有发展潜力的新型电声材料。60年代以来发现了同时具有半导体特性和压电特性的晶体,如硫化锌、氧化锌、硫化钙等。利用这种材料可以制成集敏感元件和电子线路于一体的新型压电传感器,很有发展前途。

压电式传感器大致可以分为4种,即:压电式测力传感器,压电式压力传感器,压电式加速度传感器及高分子材料压力传感器。

正压电效应

某些物质,当沿着一定方向对其加力而使其变形时,在一定表面上将产生电荷,当外力去掉后,又重新回到正常的不带电状态,这种现象称为正压电效应 。

逆压电效应

如果在这些物质的极化方向施加电场,这些物质就在一定方向上产生机 械变形或机械应力,当外电场撤去时,这些变形或应力也随之消失,这种现 象称之为逆压电效应,或称之为电致伸缩效应。

压电材料

明显呈现压电效应的敏感功能材料叫压电材料 。

压电单晶体,如石英、酒石酸钾钠等;

多晶压电陶瓷, 如钛酸钡、锆钛酸铅、铌镁酸铅等,又称为压电陶瓷。此外,聚偏二氟乙烯(PVDF) 作为一种新型的高分子物性型传感材料得到广泛的应用。

主要参数

(1)压电常数是衡量材料压电效应强弱的参数, 它直接关系到压电输出的灵敏度。

(2)压电材料的弹性常数、 刚度决定着压电器件的固有频率和动态特性。

(3)对于一定形状、 尺寸的压电元件, 其固有电容与介电常数有关; 而固有电容又影响着压电传感器的频率下限。

(4)在压电效应中,机械耦合系数等于转换输出能量(如电能)与输入的能量(如机械能)之比的平方根; 它是衡量压电材料机电能量转换效率的一个重要参数。

(5)压电材料的绝缘电阻将减少电荷泄漏, 从而改善压电传感器的低频特性。

(6)压电材料开始丧失压电特性的温度称为居里点温度。

压电转换

压电关系表达式:Q=d*F,其中d:压电常数

更一般表达式:电荷密度q ,(用单位面积受力表示)

其中:i=1,2,3表示晶体极化方向,指的是与产生电荷的面垂直的方向;j=1,2,3,4,5,6表示受力方向,1~3表示x,y.z向受力,4~6表示剪切力方向

如q1表示法向矢量为x的两个面产生的电荷

受x向(拉)力作用后在z方向产生电荷的表达式:

受z向力作用后在z方向产生电荷的表达式:

各表达式见图片:

结构

石英(SiO2)晶体结晶形状为六角形晶柱。两端为一对称的棱锥,六棱柱是它的基本组织,纵轴 z-z 称作光轴,通过六角棱线而垂直于光轴的轴线 x-x 称作电轴,垂直于棱面的轴线 y-y 称作机械轴。如果从晶体中切下一个平行六面体,并使其晶面分别平行于 z-z 、y-y 、x-x轴线,这个晶片在正常状态下不呈现电性。当施加外力时,将沿 x-x 方向形成电场,其电荷分布在垂直于 x-x 轴的平面上。

石英有关

石英的化学式为 SiO2 ,在一个晶体单元中,有三个硅离子和六个氧离子 ,后者是成对的,所以一个和两个交替排列。

当没有力作用时,硅离子和氧 离子在垂直于晶体 Z 轴的 XY 平面上的投影恰好等效为正六边形排列,如上图 a 示。这时正负离子正好分布在正六边形的顶角上,呈现电中性。如果沿 X 方向压缩,如上图 b 所示,则硅离子 1 被挤入氧离子 2 和 6 之间,而氧离子 4 被挤入硅离子 3 和 5 之间,结果表面 A 上呈现负电荷,而在表面 B 上呈现正电荷。这一现象称为纵向压电效应。

若沿 Y 方向压缩,如上图 c 所示,硅离子 3 和氧离子 2 ,以及硅离子 5 和氧离子 6 都向内移动同样的数值,故在电极 C 和 D 上不呈现电荷,而在表面 A 和 B 上, 即在 X 轴的端面上又呈现电荷,但与图 b 的极性正好相反,这时称为横向压电效应。从研究的模型同样可以看出:如果是使其伸长而不是压缩时,则电荷的极性正好相反。总之,石英等单晶体材料是各向异性的物体,在 X 或 Y 轴向施力时,在与 X 轴垂直的 面上产生电荷,电场方向与 X 轴平行,在 Z 轴方向施力时,不能产生压电效应。

压电分析

石英的晶体结构为六方晶体系,化学式为SiO2。

定义:

x:两平行柱面内夹角等分线,垂直此轴压电效应最强,称为电轴。

y :垂直于平行柱面,在电场作用下变形最大,称为机械轴。

z :无压电效应,中心轴,也称光轴。

当在电轴方向施加作用力时, 在与电轴 x 垂直的平面上将产生电荷, 其大小为Qx = d11 Fx。

式中: d11——x方向受力的压电系数

Fx——作用力

若在同一切片上, 沿机械轴y方向施加作用力Fy, 则仍在与x轴垂直的平面上产生电荷qy, 其大小为Qy=d12Fy a/b

式中: d12——y轴方向受力的压电系数

d12=-d11

a、 b——晶体切片长度和厚度

(1)当石英晶体未受外力作用时, 正、负离子正好分布在正六边形的顶角上, 形成三个互成120°夹角的电偶极矩P1、 P2、P3, P1+P2+P3 = 0, 所以晶体表面不产生电荷, 即呈中性。

(2)当石英晶体受到沿x轴方向的压力作用时, 晶体沿x方向将产生压缩变形,正负电荷重心不再重合,在x轴的正方向出现正电荷, 电偶极矩在y方向上的分量仍为零, 不出现电荷。

(3)当晶体受到沿y轴方向的压力作用时,在x轴上出现电荷, 它的极性为x轴正向为负电荷。在y轴方向上不出现电荷。

(4)如果沿z轴方向施加作用力, 因为晶体在x方向和y方向所产生的形变完全相同, 所以正负电荷重心保持重合, 电偶极矩矢量和等于零。这表明沿z轴方向施加作用力, 晶体不会产生压电效应。

压电陶瓷

压电晶体与压电陶瓷的比较:

相同点:都是具有压电效应的压电材料。

不同点:石英的优点是它的介电和压电常数的温度稳定性好,适合做工作温度范围很宽的传感器。极化后的压电陶瓷,当受外力变形后,由于电极矩的重新定位而产生电荷,压电陶瓷的压电系数是石英的几十倍甚至几百倍,但稳定性不如石英好,居里点也低。

等效电路

1、电容效应等效原理

1)压电式传感器结构

在压电晶片的两个工作面上进行金属蒸镀,形成金属膜,构成两个电极, 如图所示。

2)等效电容量

当压电传感器受到沿其敏感轴向的外力作用时,就在两电极上产生极性相反的电荷,因此它相当于一个电荷源(静电发生器)。由于压电晶体是绝缘体,当它的两极表面聚集电荷时,它又相当于一个电容器,其电容量为沿 x 轴方向加力产生纵向压电效应,沿 y 轴加力产生横向压电效应,沿相对两平面加力产生切向压 电效应。

3)等效电压

当压电晶体受外力作用时,两表面产生等量的正、负电荷 Q ,可求出其开路电压(负载电阻为无穷大时)

1)、压电式传感器既可等效为电荷源又可等效为电容器,其等效电路可认为是二者的并联,如下图(a)所示;也可认为是一个电压源和一个电容器串联,如下图(b)所示。其中 Ra为压电元件的漏电阻。

2)、压电式传感器测试系统等效电路压电式传感器工作时,需与二次仪表配套使用,此时的等效电路如下图所示。图中Cc为传感器电缆电容,Ri为放大器输入电阻,Ci为输入电容。

串并联

单片压电晶片难以产生足够的表面电荷,在压电式传感器中常采用两片或两片以上压电晶片组合在一起使用。由于压电晶体是有极性的,因而两片压电晶体构成的传感器有两种接法:串联和并联 .

应用

压电式测力传感器

压电式测力传感器是利用压电元件直接实现力-电转换的传感器,在拉、压场合,通常较多采用双片或多片石英晶体作为压电元件。其刚度大,测量范围宽,线性及稳定性高,动态特性好。当采用大时间常数的电荷放大器时,可测量准静态力。按测力状态分,有单向、双向和三向传感器,它们在结构上基本一样。

图所示为压电式单向测力传感器的结构图。传感器用于机床动态切削力的测量。绝缘套用来绝缘和定位。基座内外底面对其中心线的垂直度、上盖及晶片、电极的上下底面的平行度与表面光洁度都有极严格的要求,否则会使横向灵敏度增加或使片子因应力集中而过早破碎。为提高绝缘阻抗,传感器装配前要经过多次净化(包括超声波清洗),然后在超净工作环境下进行装配,加盖之后用电子束封焊。

压电式压力传感器的结构类型很多,但它们的基本原理与结构仍与压电式加速度和力传感器大同小异。突出的不同点是,它必须通过弹性膜、盒等,把压力收集、转换成力,再传递给压电元件。为保证静态特性及其稳定性,通常多采用石英晶体作为压电元件。

压电式加速度传感器

图所示为压缩式压电加速度传感器的结构原理图,压电元件一般由两片压电片组成。在压电片的两个表面上镀银层,并在银层上焊接输出引线,或在两个压电片之间夹一片金属,引线就焊接在金属片上,输出端的另一根引线直接与传感器基座相连。在压电片上放置一个比重较大的质量块,然后用一硬弹簧或螺栓、螺帽对质量块预加载荷。整个组件装在一个厚基座的金属壳体中,为了隔离试件的任何应变传递到压电元件上去,避免产生假信号输出,所以一般要加厚基座或选用刚度较大的材料来制造。

测量时,将传感器基座与试件刚性固定在一起。当传感器感受到振动时,由于弹簧的刚度相当大,而质量块的质量相对较小,可以认为质量块的惯性很小,因此质量块感受到与传感器基座相同的振动,并受到与加速度方向相反的惯性力作用。这样,质量块就有一正比于加速度的交变力作用在压电片上。由于压电片具有压电效应,因此在它的两个表面上就产生了交变电荷(电压),当振动频率远低于传感器固有频率时,传感器的输出电荷(电压)与作用力成正比,即与试件的加速度成正比。输出电量由传感器输出端引出,输入到前置放大器后就可以用普通的测量器测出试件的加速度,如在放大器中加进适当的积分电路,就可以测出试件的振动加速度或位移。

压电式金属加工切削力测量

主要用于金属加工切削力测量。

压电式玻璃破碎报警器

主要用于璃破碎报警器。

该内容是云汉芯城小编通过网络搜集资料整理而成,如果你还想了解更多关于电子元器件的相关知识及电子元器件行业实时市场信息,敬请关注微信公众号 【云汉芯城】。

(免责声明:素材来自网络,由云汉芯城小编搜集网络资料编辑整理,如有问题请联系处理!)

相关问答

【如何求压力 传感器 的总灵敏度?一 压电式 压力 传感器 的灵敏度s...

[最佳回答]当压力变化为3.5MPa时产生电荷为:3.5MPaX90.9pC/MPa设为Y(pC)电荷放大器的输出电压为:YX0.005V/PC设为Z(V)光线示波器上的偏移量是:ZX....

6、 压电 加速度 传感器 能否直接测量位移,为什么?

压电式传感器是利用弹簧质量系统原理。敏感芯体质量受振动加速度作用后产生一个与加速度成正比的力,压电材料受此力作用后沿其表面形成与这一力成正比的电荷信...

传感器 的选择:现有激磁频率为2.5HZ的差动变压器式测振 传感器 ...

[最佳回答]传感器把某种形式的能量转换成另一种形式的能量.有两类:有源的和无源的.有源传感器能将一种能量形式直接转变成另一种,不需要外接的能源或激励源.无...

压电传感器 有哪些方面的应用?压电传感器能否用于静态测量?为什么?

应用:一:高分子压电材料的应用,如玻璃打碎报警装置,压电式周界报警系统;二:压电陶瓷传感器的应用,如压电式动态力传感器,单向动态力传感器。压电传感器...

压电式 称重 传感器 的特点是什么?

压电式传感器的特点是,可以对各种动态力、机械冲击和振动进行测量,在声学、医学、力学、导航方面都得到广泛的应用。它具有体积小、质量轻、频响高、信噪比大...

压电式传感器 是不是更适用于静态测量?

这个认为是不正确的。因为压电式传感器其工作原理是基于压电材料的压电效应,具有使用频率宽,灵敏度高、信噪比高、结构简单、工作可靠、测量范围广等优点,因...

压电式传感器 适合什么频率的测量?

压电式传感器在动态测试方面具有优势,其低频响应可达到0.1Hz,而高频响应则可达到2WHz。因此,压电式传感器特别适合用于测量具有快速变化特性的信号。在低频响...

压电式传感器 中采用电荷放大器有何优点?为什么电压灵敏度与电缆长度有关?

可以避免信号传输中电缆的电容和电感对传感器输出,包括压电灵敏度的影响。压电式传感器,是基于压电效应的传感器。是一种...压电式传感器中采用电荷放大器,...

压电式传感器 的等效电路?

压电式传感器是一种利用压电材料变形来检测力、压力和加速度的传感器。其等效电路主要由压电材料、偏置电压源、测量电路和输出接口组成。压电材料在受到外力...

本特利振动探头测量原理 - 小红薯5A0FCA91 的回答 - 懂得

涡流传感器:在传感器的端部有一线圈,线圈通以频率较高(一般为1MHz~2MHz)的交变电压,当线圈平面靠近某一导体面时,由于线圈磁通链穿过导体,使导体的...

展开全部内容